ongkn's picture
remove unnecessary stuff from app.py
6b67e23 unverified
raw
history blame
5.96 kB
from transformers import ViTFeatureExtractor, ViTForImageClassification
import warnings
from torchvision import transforms
from datasets import load_dataset
from pytorch_grad_cam import run_dff_on_image, GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
from PIL import Image
import numpy as np
import cv2 as cv
import torch
from typing import List, Callable, Optional
import logging
from face_grab import FaceGrabber
# original borrowed from https://github.com/jacobgil/pytorch-grad-cam/blob/master/tutorials/HuggingFace.ipynb
# thanks @jacobgil
# further mods beyond this commit by @simonSlamka
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO)
class HuggingfaceToTensorModelWrapper(torch.nn.Module):
def __init__(self, model):
super(HuggingfaceToTensorModelWrapper, self).__init__()
self.model = model
def forward(self, x):
return self.model(x).logits
class GradCam():
def __init__(self):
pass
def category_name_to_index(self, model, category_name):
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
return name_to_index[category_name]
def run_grad_cam_on_image(self, model: torch.nn.Module,
target_layer: torch.nn.Module,
targets_for_gradcam: List[Callable],
reshape_transform: Optional[Callable],
input_tensor: torch.nn.Module,
input_image: Image,
method: Callable=GradCAM,
threshold: float=0.5):
with method(model=HuggingfaceToTensorModelWrapper(model),
target_layers=[target_layer],
reshape_transform=reshape_transform) as cam:
# Replicate the tensor for each of the categories we want to create Grad-CAM for:
repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1)
batch_results = cam(input_tensor=repeated_tensor,
targets=targets_for_gradcam)
results = []
for grayscale_cam in batch_results:
grayscale_cam[grayscale_cam < threshold] = 0
visualization = show_cam_on_image(np.float32(input_image)/255,
grayscale_cam,
use_rgb=True)
# Make it weight less in the notebook:
visualization = cv.resize(visualization,
(visualization.shape[1]//2, visualization.shape[0]//2))
results.append(visualization)
return np.hstack(results)
def print_top_categories(self, model, img_tensor, top_k=5):
logits = model(img_tensor.unsqueeze(0)).logits
probabilities = torch.nn.functional.softmax(logits, dim=1)
indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1]
for i in indices:
print(f"Predicted class (sorted from most confident) {i}: {model.config.id2label[i]}, confidence: {probabilities[0][i].item()}")
def reshape_transform_vit_huggingface(self, x):
activations = x[:, 1:, :]
activations = activations.view(activations.shape[0],
14, 14, activations.shape[2])
activations = activations.transpose(2, 3).transpose(1, 2)
return activations
if __name__ == "__main__":
faceGrabber = FaceGrabber()
gradCam = GradCam()
image = Image.open("Feature-Image-74.jpg").convert("RGB")
face = faceGrabber.grab_faces(np.array(image))
if face is not None:
image = Image.fromarray(face)
img_tensor = transforms.ToTensor()(image)
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
targets_for_gradcam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")),
ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))]
target_layer_dff = model.vit.layernorm
target_layer_gradcam = model.vit.encoder.layer[-2].output
image_resized = image.resize((224, 224))
tensor_resized = transforms.ToTensor()(image_resized)
dff_image = run_dff_on_image(model=model,
target_layer=target_layer_dff,
classifier=model.classifier,
img_pil=image_resized,
img_tensor=tensor_resized,
reshape_transform=gradCam.reshape_transform_vit_huggingface,
n_components=5,
top_k=10,
threshold=0,
output_size=None) #(500, 500))
cv.namedWindow("DFF Image", cv.WINDOW_KEEPRATIO)
cv.imshow("DFF Image", cv.cvtColor(dff_image, cv.COLOR_BGR2RGB))
cv.resizeWindow("DFF Image", 2500, 700)
# cv.waitKey(0)
# cv.destroyAllWindows()
grad_cam_image = gradCam.run_grad_cam_on_image(model=model,
target_layer=target_layer_gradcam,
targets_for_gradcam=targets_for_gradcam,
input_tensor=tensor_resized,
input_image=image_resized,
reshape_transform=gradCam.reshape_transform_vit_huggingface,
threshold=0)
cv.namedWindow("Grad-CAM Image", cv.WINDOW_KEEPRATIO)
cv.imshow("Grad-CAM Image", grad_cam_image)
cv.resizeWindow("Grad-CAM Image", 2000, 1250)
cv.waitKey(0)
cv.destroyAllWindows()
gradCam.print_top_categories(model, tensor_resized)