fix
Browse files- gradcam.py +6 -7
gradcam.py
CHANGED
@@ -33,11 +33,11 @@ class GradCam():
|
|
33 |
def __init__(self):
|
34 |
pass
|
35 |
|
36 |
-
def category_name_to_index(model, category_name):
|
37 |
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
|
38 |
return name_to_index[category_name]
|
39 |
|
40 |
-
def run_grad_cam_on_image(model: torch.nn.Module,
|
41 |
target_layer: torch.nn.Module,
|
42 |
targets_for_gradcam: List[Callable],
|
43 |
reshape_transform: Optional[Callable],
|
@@ -67,14 +67,14 @@ class GradCam():
|
|
67 |
return np.hstack(results)
|
68 |
|
69 |
|
70 |
-
def print_top_categories(model, img_tensor, top_k=5):
|
71 |
logits = model(img_tensor.unsqueeze(0)).logits
|
72 |
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
73 |
indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1]
|
74 |
for i in indices:
|
75 |
print(f"Predicted class (sorted from most confident) {i}: {model.config.id2label[i]}, confidence: {probabilities[0][i].item()}")
|
76 |
|
77 |
-
def reshape_transform_vit_huggingface(x):
|
78 |
activations = x[:, 1:, :]
|
79 |
activations = activations.view(activations.shape[0],
|
80 |
14, 14, activations.shape[2])
|
@@ -118,7 +118,7 @@ if __name__ == "__main__":
|
|
118 |
cv.resizeWindow("DFF Image", 2500, 700)
|
119 |
# cv.waitKey(0)
|
120 |
# cv.destroyAllWindows()
|
121 |
-
grad_cam_image = run_grad_cam_on_image(model=model,
|
122 |
target_layer=target_layer_gradcam,
|
123 |
targets_for_gradcam=targets_for_gradcam,
|
124 |
input_tensor=tensor_resized,
|
@@ -130,5 +130,4 @@ if __name__ == "__main__":
|
|
130 |
cv.resizeWindow("Grad-CAM Image", 2000, 1250)
|
131 |
cv.waitKey(0)
|
132 |
cv.destroyAllWindows()
|
133 |
-
gradCam.print_top_categories(model, tensor_resized)
|
134 |
-
|
|
|
33 |
def __init__(self):
|
34 |
pass
|
35 |
|
36 |
+
def category_name_to_index(self, model, category_name):
|
37 |
name_to_index = dict((v, k) for k, v in model.config.id2label.items())
|
38 |
return name_to_index[category_name]
|
39 |
|
40 |
+
def run_grad_cam_on_image(self, model: torch.nn.Module,
|
41 |
target_layer: torch.nn.Module,
|
42 |
targets_for_gradcam: List[Callable],
|
43 |
reshape_transform: Optional[Callable],
|
|
|
67 |
return np.hstack(results)
|
68 |
|
69 |
|
70 |
+
def print_top_categories(self, model, img_tensor, top_k=5):
|
71 |
logits = model(img_tensor.unsqueeze(0)).logits
|
72 |
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
73 |
indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1]
|
74 |
for i in indices:
|
75 |
print(f"Predicted class (sorted from most confident) {i}: {model.config.id2label[i]}, confidence: {probabilities[0][i].item()}")
|
76 |
|
77 |
+
def reshape_transform_vit_huggingface(self, x):
|
78 |
activations = x[:, 1:, :]
|
79 |
activations = activations.view(activations.shape[0],
|
80 |
14, 14, activations.shape[2])
|
|
|
118 |
cv.resizeWindow("DFF Image", 2500, 700)
|
119 |
# cv.waitKey(0)
|
120 |
# cv.destroyAllWindows()
|
121 |
+
grad_cam_image = gradCam.run_grad_cam_on_image(model=model,
|
122 |
target_layer=target_layer_gradcam,
|
123 |
targets_for_gradcam=targets_for_gradcam,
|
124 |
input_tensor=tensor_resized,
|
|
|
130 |
cv.resizeWindow("Grad-CAM Image", 2000, 1250)
|
131 |
cv.waitKey(0)
|
132 |
cv.destroyAllWindows()
|
133 |
+
gradCam.print_top_categories(model, tensor_resized)
|
|