import logging import cv2 as cv import numpy as np import dlib from typing import Optional logging.basicConfig(level=logging.INFO) class FaceGrabber: def __init__(self): self.cascades = [ "haarcascade_frontalface_default.xml", "haarcascade_frontalface_alt.xml", "haarcascade_frontalface_alt2.xml", "haarcascade_frontalface_alt_tree.xml" ] self.detector = dlib.get_frontal_face_detector() # load face detector self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor self.mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector self.paddingBy = 0.1 # padding by 10% def grab_faces(self, img: np.ndarray, bGray: bool = False) -> Optional[np.ndarray]: if bGray: img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale detected = None if detected is None: faces = self.detector(img) # detect faces if len(faces) > 0: detected = faces[0] detected = (detected.left(), detected.top(), detected.width(), detected.height()) logging.info("Face detected by dlib") if detected is None: faces = self.mmod(img) if len(faces) > 0: detected = faces[0] detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height()) logging.info("Face detected by mmod") for cascade in self.cascades: cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade) faces = cascadeClassifier.detectMultiScale(img, scaleFactor=1.5, minNeighbors=5) # detect faces if len(faces) > 0: detected = faces[0] logging.info(f"Face detected by {cascade}") break if detected is not None: # if face detected x, y, w, h = detected # grab first face padW = int(self.paddingBy * w) # get padding width padH = int(self.paddingBy * h) # get padding height imgH, imgW, _ = img.shape # get image dims x = max(0, x - padW) y = max(0, y - padH) w = min(imgW - x, w + 2 * padW) h = min(imgH - y, h + 2 * padH) x = max(0, x - (w - detected[2]) // 2) # center the face horizontally y = max(0, y - (h - detected[3]) // 2) # center the face vertically face = img[y:y+h, x:x+w] # crop face return face return None