import gradio as gr from transformers import pipeline, ViTForImageClassification, ViTImageProcessor import numpy as np from PIL import Image import cv2 as cv import dlib import logging from typing import Optional logging.basicConfig(level=logging.INFO) def grab_faces(img: np.ndarray) -> Optional[np.ndarray]: cascades = [ "haarcascade_frontalface_default.xml", "haarcascade_frontalface_alt.xml", "haarcascade_frontalface_alt2.xml", "haarcascade_frontalface_alt_tree.xml" ] detector = dlib.get_frontal_face_detector() # load face detector predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector paddingBy = 0.15 # padding by 15% gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale detected = None for cascade in cascades: cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade) faces = cascadeClassifier.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # detect faces if len(faces) > 0: detected = faces[0] logging.info(f"Face detected by {cascade}") break if detected is None: faces = detector(gray) # detect faces if len(faces) > 0: detected = faces[0] detected = (detected.left(), detected.top(), detected.width(), detected.height()) logging.info("Face detected by dlib") if detected is None: faces = mmod(img) if len(faces) > 0: detected = faces[0] detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height()) logging.info("Face detected by mmod") if detected is not None: # if face detected x, y, w, h = detected # grab first face padW = int(paddingBy * w) # get padding width padH = int(paddingBy * h) # get padding height imgH, imgW, _ = img.shape # get image dims x = max(0, x - padW) y = max(0, y - padH) w = min(imgW - x, w + 2 * padW) h = min(imgH - y, h + 2 * padH) x = max(0, x - (w - detected[2]) // 2) # center the face horizontally y = max(0, y - (h - detected[3]) // 2) # center the face vertically face = img[y:y+h, x:x+w] # crop face return face return None model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier") processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier") pipe = pipeline("image-classification", model=model, feature_extractor=processor) def classify_image(input): face = grab_faces(np.array(input)) if face is None: return "No face detected", 0, input face = Image.fromarray(face) result = pipe(face) return result[0]["label"], result[0]["score"], face iface = gr.Interface( fn=classify_image, inputs="image", outputs=["text", "number", "image"], title="Attraction Classifier - subjective", description="Takes in a (224, 224) image and outputs an attraction class: {\"pos\", \"neg\"}. Face detection, cropping, and resizing are done internally. Uploaded images are not stored by us, but may be stored by HF. Refer to their privacy policy for details." ) iface.launch()