Refactor the code, making it more robust and maintainable
Browse files
app.py
CHANGED
@@ -1,139 +1,211 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
import sys
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
|
|
7 |
|
8 |
import streamlit as st
|
9 |
from huggingface_hub import HfApi
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
== 200
|
26 |
-
else "heads"
|
27 |
-
)
|
28 |
-
TRANSFORMERS_REPOSITORY_URL = f"{TRANSFORMERS_BASE_URL}/{TRANSFORMERS_REF_TYPE}/{TRANSFORMERS_REPOSITORY_REVISION}.tar.gz"
|
29 |
-
TRANSFORMERS_REPOSITORY_PATH = "./transformers.js"
|
30 |
-
ARCHIVE_PATH = f"./transformers_{TRANSFORMERS_REPOSITORY_REVISION}.tar.gz"
|
31 |
-
HF_BASE_URL = "https://huggingface.co"
|
32 |
-
|
33 |
-
if not os.path.exists(TRANSFORMERS_REPOSITORY_PATH):
|
34 |
-
urllib.request.urlretrieve(TRANSFORMERS_REPOSITORY_URL, ARCHIVE_PATH)
|
35 |
-
|
36 |
-
with tempfile.TemporaryDirectory() as tmp_dir:
|
37 |
-
with tarfile.open(ARCHIVE_PATH, "r:gz") as tar:
|
38 |
-
tar.extractall(tmp_dir)
|
39 |
-
|
40 |
-
extracted_folder = os.path.join(tmp_dir, os.listdir(tmp_dir)[0])
|
41 |
-
|
42 |
-
os.rename(extracted_folder, TRANSFORMERS_REPOSITORY_PATH)
|
43 |
-
|
44 |
-
os.remove(ARCHIVE_PATH)
|
45 |
-
print("Repository downloaded and extracted successfully.")
|
46 |
-
|
47 |
-
st.write("## Convert a HuggingFace model to ONNX")
|
48 |
-
|
49 |
-
input_model_id = st.text_input(
|
50 |
-
"Enter the HuggingFace model ID to convert. Example: `EleutherAI/pythia-14m`"
|
51 |
-
)
|
52 |
-
|
53 |
-
if input_model_id:
|
54 |
-
model_name = (
|
55 |
-
input_model_id.replace(f"{HF_BASE_URL}/", "")
|
56 |
-
.replace("/", "-")
|
57 |
-
.replace(f"{HF_USERNAME}-", "")
|
58 |
-
.strip()
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
)
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
|
114 |
-
st.code(output.stderr)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
)
|
127 |
-
except Exception as e:
|
128 |
-
upload_error_message = str(e)
|
129 |
|
130 |
-
os.system(f"rm -rf {model_folder_path}")
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
else:
|
135 |
-
st.success(f"Upload successful!")
|
136 |
-
st.write("You can now go and view the model on HuggingFace!")
|
137 |
-
st.link_button(
|
138 |
-
f"Go to {output_model_id}", output_model_url, type="primary"
|
139 |
-
)
|
|
|
1 |
+
import logging
|
2 |
import os
|
3 |
import subprocess
|
4 |
import sys
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
from urllib.request import urlopen, urlretrieve
|
9 |
|
10 |
import streamlit as st
|
11 |
from huggingface_hub import HfApi
|
12 |
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class Config:
|
19 |
+
"""Application configuration."""
|
20 |
+
|
21 |
+
hf_token: str
|
22 |
+
hf_username: str
|
23 |
+
transformers_version: str = "3.0.0"
|
24 |
+
hf_base_url: str = "https://huggingface.co"
|
25 |
+
transformers_base_url: str = (
|
26 |
+
"https://github.com/xenova/transformers.js/archive/refs"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
+
repo_path: Path = Path("./transformers.js")
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def from_env(cls) -> "Config":
|
32 |
+
"""Create config from environment variables and secrets."""
|
33 |
+
hf_token = st.secrets.get("HF_TOKEN") or os.getenv("HF_TOKEN", "")
|
34 |
+
hf_username = (
|
35 |
+
st.secrets.get("HF_USERNAME")
|
36 |
+
or os.getenv("HF_USERNAME")
|
37 |
+
or os.getenv("SPACE_AUTHOR_NAME", "")
|
38 |
+
)
|
39 |
+
|
40 |
+
if not hf_token or not hf_username:
|
41 |
+
raise ValueError("HF_TOKEN and HF_USERNAME must be set")
|
42 |
+
|
43 |
+
return cls(hf_token=hf_token, hf_username=hf_username)
|
44 |
+
|
45 |
+
|
46 |
+
class ModelConverter:
|
47 |
+
"""Handles model conversion and upload operations."""
|
48 |
+
|
49 |
+
def __init__(self, config: Config):
|
50 |
+
self.config = config
|
51 |
+
self.api = HfApi(token=config.hf_token)
|
52 |
+
|
53 |
+
def _get_ref_type(self) -> str:
|
54 |
+
"""Determine the reference type for the transformers repository."""
|
55 |
+
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
|
56 |
+
try:
|
57 |
+
return "tags" if urlopen(url).getcode() == 200 else "heads"
|
58 |
+
except Exception as e:
|
59 |
+
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
|
60 |
+
return "heads"
|
61 |
+
|
62 |
+
def setup_repository(self) -> None:
|
63 |
+
"""Download and setup transformers repository if needed."""
|
64 |
+
if self.config.repo_path.exists():
|
65 |
+
return
|
66 |
+
|
67 |
+
ref_type = self._get_ref_type()
|
68 |
+
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
|
69 |
+
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
|
70 |
+
|
71 |
+
try:
|
72 |
+
urlretrieve(archive_url, archive_path)
|
73 |
+
self._extract_archive(archive_path)
|
74 |
+
logger.info("Repository downloaded and extracted successfully")
|
75 |
+
except Exception as e:
|
76 |
+
raise RuntimeError(f"Failed to setup repository: {e}")
|
77 |
+
finally:
|
78 |
+
archive_path.unlink(missing_ok=True)
|
79 |
+
|
80 |
+
def _extract_archive(self, archive_path: Path) -> None:
|
81 |
+
"""Extract the downloaded archive."""
|
82 |
+
import tarfile
|
83 |
+
import tempfile
|
84 |
+
|
85 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
86 |
+
with tarfile.open(archive_path, "r:gz") as tar:
|
87 |
+
tar.extractall(tmp_dir)
|
88 |
+
|
89 |
+
extracted_folder = next(Path(tmp_dir).iterdir())
|
90 |
+
extracted_folder.rename(self.config.repo_path)
|
91 |
+
|
92 |
+
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
|
93 |
+
"""Convert the model to ONNX format."""
|
94 |
+
try:
|
95 |
+
result = subprocess.run(
|
96 |
+
[
|
97 |
+
sys.executable,
|
98 |
+
"-m",
|
99 |
+
"scripts.convert",
|
100 |
+
"--quantize",
|
101 |
+
"--model_id",
|
102 |
+
input_model_id,
|
103 |
+
],
|
104 |
+
cwd=self.config.repo_path,
|
105 |
+
capture_output=True,
|
106 |
+
text=True,
|
107 |
+
env={},
|
108 |
)
|
109 |
|
110 |
+
if result.returncode != 0:
|
111 |
+
return False, result.stderr
|
112 |
+
|
113 |
+
self._rename_model_files(input_model_id)
|
114 |
+
return True, result.stderr
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return False, str(e)
|
118 |
+
|
119 |
+
def _rename_model_files(self, input_model_id: str) -> None:
|
120 |
+
"""Rename the converted model files."""
|
121 |
+
model_path = self.config.repo_path / "models" / input_model_id / "onnx"
|
122 |
+
|
123 |
+
renames = [
|
124 |
+
("model.onnx", "decoder_model_merged.onnx"),
|
125 |
+
("model_quantized.onnx", "decoder_model_merged_quantized.onnx"),
|
126 |
+
]
|
127 |
+
|
128 |
+
for old_name, new_name in renames:
|
129 |
+
(model_path / old_name).rename(model_path / new_name)
|
130 |
+
|
131 |
+
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
|
132 |
+
"""Upload the converted model to Hugging Face."""
|
133 |
+
try:
|
134 |
+
self.api.create_repo(output_model_id, exist_ok=True, private=False)
|
135 |
+
model_folder_path = self.config.repo_path / "models" / input_model_id
|
136 |
+
|
137 |
+
self.api.upload_folder(
|
138 |
+
folder_path=str(model_folder_path), repo_id=output_model_id
|
139 |
)
|
140 |
+
return None
|
141 |
+
except Exception as e:
|
142 |
+
return str(e)
|
143 |
+
finally:
|
144 |
+
import shutil
|
145 |
|
146 |
+
shutil.rmtree(model_folder_path, ignore_errors=True)
|
147 |
|
|
|
148 |
|
149 |
+
def main():
|
150 |
+
"""Main application entry point."""
|
151 |
+
st.write("## Convert a Hugging Face model to ONNX")
|
152 |
+
|
153 |
+
try:
|
154 |
+
config = Config.from_env()
|
155 |
+
converter = ModelConverter(config)
|
156 |
+
converter.setup_repository()
|
157 |
+
|
158 |
+
input_model_id = st.text_input(
|
159 |
+
"Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"
|
160 |
+
)
|
161 |
+
|
162 |
+
if not input_model_id:
|
163 |
+
return
|
164 |
+
|
165 |
+
model_name = (
|
166 |
+
input_model_id.replace(f"{config.hf_base_url}/", "")
|
167 |
+
.replace("/", "-")
|
168 |
+
.replace(f"{config.hf_username}-", "")
|
169 |
+
.strip()
|
170 |
+
)
|
171 |
+
|
172 |
+
output_model_id = f"{config.hf_username}/{model_name}-ONNX"
|
173 |
+
output_model_url = f"{config.hf_base_url}/{output_model_id}"
|
174 |
+
|
175 |
+
if converter.api.repo_exists(output_model_id):
|
176 |
+
st.write("This model has already been converted! 🎉")
|
177 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
178 |
+
return
|
179 |
+
|
180 |
+
st.write(f"This model will be converted and uploaded to the following URL:")
|
181 |
+
st.code(output_model_url, language="plaintext")
|
182 |
+
|
183 |
+
if not st.button(label="Proceed", type="primary"):
|
184 |
+
return
|
185 |
+
|
186 |
+
with st.spinner("Converting model..."):
|
187 |
+
success, stderr = converter.convert_model(input_model_id)
|
188 |
+
if not success:
|
189 |
+
st.error(f"Conversion failed: {stderr}")
|
190 |
+
return
|
191 |
+
|
192 |
+
st.success("Conversion successful!")
|
193 |
+
st.code(stderr)
|
194 |
+
|
195 |
+
with st.spinner("Uploading model..."):
|
196 |
+
error = converter.upload_model(input_model_id, output_model_id)
|
197 |
+
if error:
|
198 |
+
st.error(f"Upload failed: {error}")
|
199 |
+
return
|
200 |
|
201 |
+
st.success("Upload successful!")
|
202 |
+
st.write("You can now go and view the model on Hugging Face!")
|
203 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
204 |
|
205 |
+
except Exception as e:
|
206 |
+
logger.exception("Application error")
|
207 |
+
st.error(f"An error occurred: {str(e)}")
|
|
|
|
|
|
|
208 |
|
|
|
209 |
|
210 |
+
if __name__ == "__main__":
|
211 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|