Update app.py
Browse files
app.py
CHANGED
@@ -104,12 +104,6 @@ def get_model(ctx, model_path):
|
|
104 |
|
105 |
# Download test image
|
106 |
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/duc/city1.png')
|
107 |
-
# read image as rgb
|
108 |
-
im = cv.imread('city1.png')[:, :, ::-1]
|
109 |
-
# set output shape (same as input shape)
|
110 |
-
result_shape = [im.shape[0],im.shape[1]]
|
111 |
-
# set rgb mean of input image (used in mean subtraction)
|
112 |
-
rgb_mean = cv.mean(im)
|
113 |
|
114 |
|
115 |
# Download ONNX model
|
@@ -125,8 +119,15 @@ else:
|
|
125 |
mod = get_model(ctx, 'ResNet101_DUC_HDC.onnx')
|
126 |
|
127 |
def inference(im):
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
|
|
|
104 |
|
105 |
# Download test image
|
106 |
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/duc/city1.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
# Download ONNX model
|
|
|
119 |
mod = get_model(ctx, 'ResNet101_DUC_HDC.onnx')
|
120 |
|
121 |
def inference(im):
|
122 |
+
# read image as rgb
|
123 |
+
im = cv.imread(im)[:, :, ::-1]
|
124 |
+
# set output shape (same as input shape)
|
125 |
+
result_shape = [im.shape[0],im.shape[1]]
|
126 |
+
# set rgb mean of input image (used in mean subtraction)
|
127 |
+
rgb_mean = cv.mean(im)
|
128 |
+
pre = preprocess(im)
|
129 |
+
conf,result_img,blended_img,raw = predict(pre)
|
130 |
+
return blended_img
|
131 |
|
132 |
+
examples=[['city1.png']]
|
133 |
+
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil"),examples=examples).launch()
|