Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,29 +9,15 @@ import gradio as gr
|
|
9 |
from PIL import Image
|
10 |
import imageio
|
11 |
import onnxruntime as ort
|
|
|
12 |
|
13 |
-
def get_image(path):
|
14 |
-
'''
|
15 |
-
Using path to image, return the RGB load image
|
16 |
-
'''
|
17 |
-
img = imageio.imread(path, pilmode='RGB')
|
18 |
-
return img
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
|
27 |
-
img[:, :, 0] -= 123.68
|
28 |
-
img[:, :, 1] -= 116.779
|
29 |
-
img[:, :, 2] -= 103.939
|
30 |
-
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
|
31 |
-
img = img.transpose((2, 0, 1))
|
32 |
-
img = np.expand_dims(img, axis=0)
|
33 |
-
|
34 |
-
return img
|
35 |
|
36 |
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
37 |
|
@@ -44,8 +30,9 @@ os.system("wget https://github.com/AK391/models/raw/main/vision/classification/d
|
|
44 |
ort_session = ort.InferenceSession("densenet-9.onnx")
|
45 |
|
46 |
|
47 |
-
def predict(
|
48 |
-
|
|
|
49 |
|
50 |
outputs = ort_session.run(
|
51 |
None,
|
@@ -63,4 +50,4 @@ title="DenseNet-121"
|
|
63 |
description="DenseNet-121 is a convolutional neural network for classification."
|
64 |
|
65 |
examples=[['apple.jpg']]
|
66 |
-
gr.Interface(predict,gr.inputs.Image(type='
|
|
|
9 |
from PIL import Image
|
10 |
import imageio
|
11 |
import onnxruntime as ort
|
12 |
+
from torchvision import transforms
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
preprocess = transforms.Compose([
|
16 |
+
transforms.Resize(256),
|
17 |
+
transforms.CenterCrop(224),
|
18 |
+
transforms.ToTensor(),
|
19 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
20 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
23 |
|
|
|
30 |
ort_session = ort.InferenceSession("densenet-9.onnx")
|
31 |
|
32 |
|
33 |
+
def predict(pil):
|
34 |
+
input_tensor = preprocess(pil)
|
35 |
+
img_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
36 |
|
37 |
outputs = ort_session.run(
|
38 |
None,
|
|
|
50 |
description="DenseNet-121 is a convolutional neural network for classification."
|
51 |
|
52 |
examples=[['apple.jpg']]
|
53 |
+
gr.Interface(predict,gr.inputs.Image(type='pil'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)
|