File size: 2,660 Bytes
ba65a7b 3d83121 ba65a7b aa75a8f ba65a7b aa75a8f ba65a7b 3d83121 ba65a7b 3d83121 ba65a7b c615a1a ba65a7b 871866d ba65a7b 57b24df ba65a7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import mxnet as mx
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from mxnet.gluon.data.vision import transforms
from mxnet.contrib.onnx.onnx2mx.import_model import import_model
import os
import gradio as gr
from PIL import Image
import imageio
def get_image(path):
'''
Using path to image, return the RGB load image
'''
img = imageio.imread(path, pilmode='RGB')
return img
# Pre-processing function for ImageNet models using numpy
def preprocess(img):
'''
Preprocessing required on the images for inference with mxnet gluon
The function takes loaded image and returns processed tensor
'''
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
img[:, :, 0] -= 123.68
img[:, :, 1] -= 116.779
img[:, :, 2] -= 103.939
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
with open('synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
os.system("wget https://github.com/onnx/models/raw/main/vision/classification/inception_and_googlenet/googlenet/model/googlenet-9.onnx")
# Enter path to the ONNX model file
sym, arg_params, aux_params = import_model('googlenet-9.onnx')
Batch = namedtuple('Batch', ['data'])
def predict(path):
img = get_image(path)
img = preprocess(img)
mod.forward(Batch([img]))
# Take softmax to generate probabilities
scores = mx.ndarray.softmax(mod.get_outputs()[0]).asnumpy()
# print the top-5 inferences class
scores = np.squeeze(scores)
a = np.argsort(scores)[::-1]
results = {}
for i in a[0:5]:
results[labels[i]] = float(scores[i])
return results
# Determine and set context
if len(mx.test_utils.list_gpus())==0:
ctx = mx.cpu()
else:
ctx = mx.gpu(0)
# Load module
mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['data_0'], label_names=None)
mod.bind(for_training=False, data_shapes=[('data_0', (1,3,224,224))],label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True, allow_extra=True)
title="GoogleNet"
description="GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014."
examples=[['catonnx.jpg']]
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True) |