import mxnet as mx import matplotlib.pyplot as plt import numpy as np from collections import namedtuple from mxnet.gluon.data.vision import transforms from mxnet.contrib.onnx.onnx2mx.import_model import import_model import os import gradio as gr from PIL import Image import imageio def get_image(path): ''' Using path to image, return the RGB load image ''' img = imageio.imread(path, pilmode='RGB') return img # Pre-processing function for ImageNet models using numpy def preprocess(img): ''' Preprocessing required on the images for inference with mxnet gluon The function takes loaded image and returns processed tensor ''' img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32) img[:, :, 0] -= 123.68 img[:, :, 1] -= 116.779 img[:, :, 2] -= 103.939 img[:,:,[0,1,2]] = img[:,:,[2,1,0]] img = img.transpose((2, 0, 1)) img = np.expand_dims(img, axis=0) return img mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg') mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt') with open('synset.txt', 'r') as f: labels = [l.rstrip() for l in f] os.system("wget https://github.com/onnx/models/raw/main/vision/classification/inception_and_googlenet/googlenet/model/googlenet-9.onnx") # Enter path to the ONNX model file sym, arg_params, aux_params = import_model('googlenet-9.onnx') Batch = namedtuple('Batch', ['data']) def predict(path): img = get_image(path) img = preprocess(img) mod.forward(Batch([img])) # Take softmax to generate probabilities scores = mx.ndarray.softmax(mod.get_outputs()[0]).asnumpy() # print the top-5 inferences class scores = np.squeeze(scores) a = np.argsort(scores)[::-1] results = {} for i in a[0:5]: results[labels[i]] = float(scores[i]) return results # Determine and set context if len(mx.test_utils.list_gpus())==0: ctx = mx.cpu() else: ctx = mx.gpu(0) # Load module mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['data_0'], label_names=None) mod.bind(for_training=False, data_shapes=[('data_0', (1,3,224,224))],label_shapes=mod._label_shapes) mod.set_params(arg_params, aux_params, allow_missing=True, allow_extra=True) title="GoogleNet" description="GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014." examples=[['catonnx.jpg']] gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True)