Spaces:
Runtime error
Runtime error
File size: 1,958 Bytes
188d4b8 81f3097 188d4b8 81f3097 188d4b8 81f3097 188d4b8 81f3097 188d4b8 81f3097 188d4b8 923bfcc 188d4b8 923bfcc 188d4b8 8ec3ad9 188d4b8 81f3097 188d4b8 81f3097 95b3347 81f3097 188d4b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import mxnet as mx
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from mxnet.gluon.data.vision import transforms
import os
import gradio as gr
from PIL import Image
import imageio
import onnxruntime as ort
def get_image(path):
'''
Using path to image, return the RGB load image
'''
img = imageio.imread(path, pilmode='RGB')
return img
# Pre-processing function for ImageNet models using numpy
def preprocess(img):
'''
Preprocessing required on the images for inference with mxnet gluon
The function takes loaded image and returns processed tensor
'''
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
img[:, :, 0] -= 123.68
img[:, :, 1] -= 116.779
img[:, :, 2] -= 103.939
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
with open('synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
os.system("wget https://github.com/onnx/models/raw/main/vision/classification/inception_and_googlenet/inception_v1/model/inception-v1-12.onnx")
ort_session = ort.InferenceSession("inception-v1-12.onnx")
def predict(path):
img_batch = preprocess(get_image(path))
outputs = ort_session.run(
None,
{"data_0": img_batch.astype(np.float32)},
)
a = np.argsort(-outputs[0].flatten())
results = {}
for i in a[0:5]:
results[labels[i]]=float(outputs[0][0][i])
return results
title="Inception v1"
description="Inception v1 is a reproduction of GoogLeNet."
examples=[['catonnx.jpg']]
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True) |