Spaces:
Runtime error
Runtime error
File size: 1,836 Bytes
a739b51 11a75eb a739b51 11a75eb a739b51 11a75eb 25cc91f 11a75eb a739b51 11a75eb a739b51 c12d225 a739b51 c12d225 a739b51 c12d225 a739b51 11a75eb c12d225 a739b51 58659b1 11a75eb 58659b1 fd3b091 11a75eb a739b51 11a75eb 5455bbe 11a75eb a739b51 11a75eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import onnx
import numpy as np
import onnxruntime as ort
from PIL import Image
import cv2
import os
import gradio as gr
os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt")
with open('synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx")
os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg")
model_path = 'inception-v2-9.onnx'
model = onnx.load(model_path)
session = ort.InferenceSession(model.SerializeToString())
def get_image(path):
with Image.open(path) as img:
img = np.array(img.convert('RGB'))
return img
def preprocess(img):
'''
Preprocessing required on the images for inference with mxnet gluon
The function takes loaded image and returns processed tensor
'''
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
img[:, :, 0] -= 123.68
img[:, :, 1] -= 116.779
img[:, :, 2] -= 103.939
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
return img
def predict(path):
img = get_image(path)
img = preprocess(img)
ort_inputs = {session.get_inputs()[0].name: img}
preds = session.run(None, ort_inputs)[0]
preds = np.squeeze(preds)
a = np.argsort(preds)[::-1]
results = {}
for i in a[0:5]:
results[labels[a[i]]] = float(preds[a[i]])
return results
title="Inception v2"
description="Inception v2 is a deep convolutional networks for classification."
examples=[['kitten.jpg']]
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True) |