import onnx import numpy as np import onnxruntime as ort from PIL import Image import cv2 import os import gradio as gr os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt") with open('synset.txt', 'r') as f: labels = [l.rstrip() for l in f] os.system("wget https://github.com/AK391/models/raw/main/vision/classification/inception_and_googlenet/inception_v2/model/inception-v2-9.onnx") os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg") model_path = 'inception-v2-9.onnx' model = onnx.load(model_path) session = ort.InferenceSession(model.SerializeToString()) def get_image(path): with Image.open(path) as img: img = np.array(img.convert('RGB')) return img def preprocess(img): ''' Preprocessing required on the images for inference with mxnet gluon The function takes loaded image and returns processed tensor ''' img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32) img[:, :, 0] -= 123.68 img[:, :, 1] -= 116.779 img[:, :, 2] -= 103.939 img[:,:,[0,1,2]] = img[:,:,[2,1,0]] img = img.transpose((2, 0, 1)) img = np.expand_dims(img, axis=0) return img def predict(path): img = get_image(path) img = preprocess(img) ort_inputs = {session.get_inputs()[0].name: img} preds = session.run(None, ort_inputs)[0] preds = np.squeeze(preds) a = np.argsort(preds)[::-1] results = {} for i in a[0:5]: results[labels[a[i]]] = float(preds[a[i]]) return results title="Inception v2" description="Inception v2 is a deep convolutional networks for classification." examples=[['kitten.jpg']] gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)