Spaces:
Runtime error
Runtime error
import onnx | |
import numpy as np | |
import onnxruntime as ort | |
from PIL import Image | |
import cv2 | |
import os | |
import gradio as gr | |
import mxnet | |
from torchvision import transforms | |
os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt") | |
with open('synset.txt', 'r') as f: | |
labels = [l.rstrip() for l in f] | |
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-v2-10.onnx") | |
os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg") | |
model_path = 'shufflenet-v2-10.onnx' | |
model = onnx.load(model_path) | |
session = ort.InferenceSession(model.SerializeToString()) | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
def predict(img): | |
input_tensor = preprocess(img) | |
img = input_tensor.unsqueeze(0) | |
ort_inputs = {session.get_inputs()[0].name: img.cpu().detach().numpy()} | |
preds = session.run(None, ort_inputs)[0] | |
preds = np.squeeze(preds) | |
a = np.argsort(preds) | |
results = {} | |
for i in a[0:5]: | |
results[labels[a[i]]] = float(preds[a[i]]) | |
return results | |
title="ShuffleNet-v2" | |
description="ShuffleNet is a deep convolutional network for image classification. ShuffleNetV2 is an improved architecture that is the state-of-the-art in terms of speed and accuracy tradeoff used for image classification." | |
examples=[['kitten.jpg']] | |
gr.Interface(predict,gr.inputs.Image(type='pil'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True) |