Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,29 +10,6 @@ from PIL import Image
|
|
10 |
import imageio
|
11 |
import onnxruntime as ort
|
12 |
|
13 |
-
def get_image(path):
|
14 |
-
'''
|
15 |
-
Using path to image, return the RGB load image
|
16 |
-
'''
|
17 |
-
img = imageio.imread(path, pilmode='RGB')
|
18 |
-
return img
|
19 |
-
|
20 |
-
# Pre-processing function for ImageNet models using numpy
|
21 |
-
def preprocess(img):
|
22 |
-
'''
|
23 |
-
Preprocessing required on the images for inference with mxnet gluon
|
24 |
-
The function takes loaded image and returns processed tensor
|
25 |
-
'''
|
26 |
-
img = np.array(Image.fromarray(img).resize((224, 224))).astype(np.float32)
|
27 |
-
img[:, :, 0] -= 123.68
|
28 |
-
img[:, :, 1] -= 116.779
|
29 |
-
img[:, :, 2] -= 103.939
|
30 |
-
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
|
31 |
-
img = img.transpose((2, 0, 1))
|
32 |
-
img = np.expand_dims(img, axis=0)
|
33 |
-
|
34 |
-
return img
|
35 |
-
|
36 |
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
37 |
|
38 |
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
|
@@ -45,11 +22,18 @@ ort_session = ort.InferenceSession("shufflenet-v2-10.onnx")
|
|
45 |
|
46 |
|
47 |
def predict(path):
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
outputs = ort_session.run(
|
51 |
None,
|
52 |
-
{"input":
|
53 |
)
|
54 |
|
55 |
a = np.argsort(outputs[0].flatten())
|
|
|
10 |
import imageio
|
11 |
import onnxruntime as ort
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
|
14 |
|
15 |
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
|
|
|
22 |
|
23 |
|
24 |
def predict(path):
|
25 |
+
input_image = Image.open(path)
|
26 |
+
preprocess = transforms.Compose([
|
27 |
+
transforms.Resize(256),
|
28 |
+
transforms.CenterCrop(224),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
+
])
|
32 |
+
input_tensor = preprocess(input_image)
|
33 |
+
input_batch = input_tensor.unsqueeze(0)
|
34 |
outputs = ort_session.run(
|
35 |
None,
|
36 |
+
{"input": input_batch.astype(np.float32)},
|
37 |
)
|
38 |
|
39 |
a = np.argsort(outputs[0].flatten())
|