import onnx import numpy as np import onnxruntime as ort from PIL import Image import cv2 import os import gradio as gr import mxnet from mxnet.gluon.data.vision import transforms os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt") with open('synset.txt', 'r') as f: labels = [l.rstrip() for l in f] os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-v2-10.onnx") os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg") model_path = 'shufflenet-v2-10.onnx' model = onnx.load(model_path) session = ort.InferenceSession(model.SerializeToString()) def get_image(path): with Image.open(path) as img: img = np.array(img.convert('RGB')) return img def preprocess(img): ''' Preprocessing required on the images for inference with mxnet gluon The function takes path to an image and returns processed tensor ''' transform_fn = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) img = mxnet.ndarray.array(img) img = transform_fn(img) img = img.expand_dims(axis=0) # batchify return img.asnumpy() def predict(path): img = get_image(path) img = preprocess(img) ort_inputs = {session.get_inputs()[0].name: img} preds = session.run(None, ort_inputs)[0] preds = np.squeeze(preds) a = np.argsort(preds) results = {} for i in a[0:5]: results[labels[a[i]]] = float(preds[a[i]]) return results title="ShuffleNet-v2" description="ShuffleNet is a deep convolutional network for image classification. ShuffleNetV2 is an improved architecture that is the state-of-the-art in terms of speed and accuracy tradeoff used for image classification." examples=[['kitten.jpg']] gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)