import onnx import numpy as np import onnxruntime as ort from PIL import Image import cv2 import os import gradio as gr import mxnet from torchvision import transforms os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt") with open('synset.txt', 'r') as f: labels = [l.rstrip() for l in f] os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-v2-10.onnx") os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg") model_path = 'shufflenet-v2-10.onnx' model = onnx.load(model_path) session = ort.InferenceSession(model.SerializeToString()) preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def predict(img): input_tensor = preprocess(img) img = input_tensor.unsqueeze(0) ort_inputs = {session.get_inputs()[0].name: img.cpu().detach().numpy()} preds = session.run(None, ort_inputs)[0] preds = np.squeeze(preds) a = np.argsort(preds) results = {} for i in a[0:5]: results[labels[a[i]]] = float(preds[a[i]]) return results title="ShuffleNet-v2" description="ShuffleNet is a deep convolutional network for image classification. ShuffleNetV2 is an improved architecture that is the state-of-the-art in terms of speed and accuracy tradeoff used for image classification." examples=[['kitten.jpg']] gr.Interface(predict,gr.inputs.Image(type='pil'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)