|
import os |
|
from onnxt5 import GenerativeT5 |
|
from onnxt5.api import get_encoder_decoder_tokenizer |
|
import gradio as gr |
|
|
|
os.system("pip install onnxruntime==1.6.0") |
|
|
|
|
|
decoder_sess, encoder_sess, tokenizer = get_encoder_decoder_tokenizer() |
|
generative_t5 = GenerativeT5(encoder_sess, decoder_sess, tokenizer, onnx=True) |
|
|
|
def inference(prompt): |
|
output_text, output_logits = generative_t5(prompt, max_length=100, temperature=0.) |
|
return output_text |
|
|
|
title="T5" |
|
description="T5 is a transformer model which aims to provide great flexibility and provide better semantic understanding through the training of multiple tasks at once." |
|
gr.Interface(inference,"text","text",title=title,description=description).launch(enable_queue=True) |