from onnxt5 import GenerativeT5 from onnxt5.api import get_encoder_decoder_tokenizer import gradio as gr decoder_sess, encoder_sess, tokenizer = get_encoder_decoder_tokenizer() generative_t5 = GenerativeT5(encoder_sess, decoder_sess, tokenizer, onnx=True) def inference(prompt): output_text, output_logits = generative_t5(prompt, max_length=100, temperature=0.) return output_text title="T5" description="T5 is a transformer model which aims to provide great flexibility and provide better semantic understanding through the training of multiple tasks at once." gr.Interface(inference,"text","text",title=title,description=description).launch(enable_queue=True)