Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,10 @@ from matplotlib.colors import hsv_to_rgb
|
|
9 |
import cv2
|
10 |
import gradio as gr
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def preprocess(image):
|
14 |
# Resize
|
@@ -51,61 +55,67 @@ outputs = sess.get_outputs()
|
|
51 |
|
52 |
|
53 |
classes = [line.rstrip('\n') for line in open('coco_classes.txt')]
|
54 |
-
|
55 |
-
|
56 |
-
def
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def inference(img):
|
100 |
input_image = Image.open(img)
|
101 |
orig_tensor = np.asarray(input_image)
|
102 |
input_tensor = preprocess(input_image)
|
|
|
103 |
output_names = list(map(lambda output: output.name, outputs))
|
104 |
input_name = sess.get_inputs()[0].name
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
return
|
109 |
|
110 |
title="Mask R-CNN"
|
111 |
description="This model is a real-time neural network for object instance segmentation that detects 80 different classes."
|
|
|
9 |
import cv2
|
10 |
import gradio as gr
|
11 |
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib.patches as patches
|
14 |
+
|
15 |
+
import pycocotools.mask as mask_util
|
16 |
|
17 |
def preprocess(image):
|
18 |
# Resize
|
|
|
55 |
|
56 |
|
57 |
classes = [line.rstrip('\n') for line in open('coco_classes.txt')]
|
58 |
+
|
59 |
+
|
60 |
+
def display_objdetect_image(image, boxes, labels, scores, masks, score_threshold=0.7):
|
61 |
+
# Resize boxes
|
62 |
+
ratio = 800.0 / min(image.size[0], image.size[1])
|
63 |
+
boxes /= ratio
|
64 |
+
|
65 |
+
_, ax = plt.subplots(1, figsize=(12,9))
|
66 |
+
|
67 |
+
image = np.array(image)
|
68 |
+
|
69 |
+
for mask, box, label, score in zip(masks, boxes, labels, scores):
|
70 |
+
# Showing boxes with score > 0.7
|
71 |
+
if score <= score_threshold:
|
72 |
+
continue
|
73 |
+
|
74 |
+
# Finding contour based on mask
|
75 |
+
mask = mask[0, :, :, None]
|
76 |
+
int_box = [int(i) for i in box]
|
77 |
+
mask = cv2.resize(mask, (int_box[2]-int_box[0]+1, int_box[3]-int_box[1]+1))
|
78 |
+
mask = mask > 0.5
|
79 |
+
im_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
|
80 |
+
x_0 = max(int_box[0], 0)
|
81 |
+
x_1 = min(int_box[2] + 1, image.shape[1])
|
82 |
+
y_0 = max(int_box[1], 0)
|
83 |
+
y_1 = min(int_box[3] + 1, image.shape[0])
|
84 |
+
mask_y_0 = max(y_0 - box[1], 0)
|
85 |
+
mask_y_1 = mask_y_0 + y_1 - y_0
|
86 |
+
mask_x_0 = max(x_0 - box[0], 0)
|
87 |
+
mask_x_1 = mask_x_0 + x_1 - x_0
|
88 |
+
im_mask[y_0:y_1, x_0:x_1] = mask[
|
89 |
+
mask_y_0 : mask_y_1, mask_x_0 : mask_x_1
|
90 |
+
]
|
91 |
+
im_mask = im_mask[:, :, None]
|
92 |
+
|
93 |
+
# OpenCV version 4.x
|
94 |
+
contours, hierarchy = cv2.findContours(
|
95 |
+
im_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
96 |
+
)
|
97 |
+
|
98 |
+
image = cv2.drawContours(image, contours, -1, 25, 3)
|
99 |
+
|
100 |
+
rect = patches.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor='b', facecolor='none')
|
101 |
+
ax.annotate(classes[label] + ':' + str(np.round(score, 2)), (box[0], box[1]), color='w', fontsize=12)
|
102 |
+
ax.add_patch(rect)
|
103 |
+
|
104 |
+
ax.imshow(image)
|
105 |
+
plt.savefig('out.png', bbox_inches='tight')
|
106 |
+
|
107 |
|
108 |
def inference(img):
|
109 |
input_image = Image.open(img)
|
110 |
orig_tensor = np.asarray(input_image)
|
111 |
input_tensor = preprocess(input_image)
|
112 |
+
|
113 |
output_names = list(map(lambda output: output.name, outputs))
|
114 |
input_name = sess.get_inputs()[0].name
|
115 |
+
|
116 |
+
boxes, labels, scores, masks = sess.run(output_names, {input_name: input_tensor})
|
117 |
+
display_objdetect_image(input_image, boxes, labels, scores, masks)
|
118 |
+
return 'out.png'
|
119 |
|
120 |
title="Mask R-CNN"
|
121 |
description="This model is a real-time neural network for object instance segmentation that detects 80 different classes."
|