Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,34 @@ from matplotlib.colors import hsv_to_rgb
|
|
9 |
import cv2
|
10 |
import gradio as gr
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
preprocess = transforms.Compose([
|
13 |
transforms.ToTensor(),
|
14 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
|
9 |
import cv2
|
10 |
import gradio as gr
|
11 |
|
12 |
+
|
13 |
+
def preprocess(image):
|
14 |
+
# Resize
|
15 |
+
ratio = 800.0 / min(image.size[0], image.size[1])
|
16 |
+
image = image.resize((int(ratio * image.size[0]), int(ratio * image.size[1])), Image.BILINEAR)
|
17 |
+
|
18 |
+
# Convert to BGR
|
19 |
+
image = np.array(image)[:, :, [2, 1, 0]].astype('float32')
|
20 |
+
|
21 |
+
# HWC -> CHW
|
22 |
+
image = np.transpose(image, [2, 0, 1])
|
23 |
+
|
24 |
+
# Normalize
|
25 |
+
mean_vec = np.array([102.9801, 115.9465, 122.7717])
|
26 |
+
for i in range(image.shape[0]):
|
27 |
+
image[i, :, :] = image[i, :, :] - mean_vec[i]
|
28 |
+
|
29 |
+
# Pad to be divisible of 32
|
30 |
+
import math
|
31 |
+
padded_h = int(math.ceil(image.shape[1] / 32) * 32)
|
32 |
+
padded_w = int(math.ceil(image.shape[2] / 32) * 32)
|
33 |
+
|
34 |
+
padded_image = np.zeros((3, padded_h, padded_w), dtype=np.float32)
|
35 |
+
padded_image[:, :image.shape[1], :image.shape[2]] = image
|
36 |
+
image = padded_image
|
37 |
+
|
38 |
+
return image
|
39 |
+
|
40 |
preprocess = transforms.Compose([
|
41 |
transforms.ToTensor(),
|
42 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|