|
import cv2 |
|
import numpy as np |
|
from onnx import numpy_helper |
|
import onnx |
|
import os |
|
from PIL import Image |
|
from matplotlib.pyplot import imshow |
|
import onnxruntime as rt |
|
from scipy import special |
|
import colorsys |
|
import random |
|
import gradio as gr |
|
|
|
def image_preprocess(image, target_size, gt_boxes=None): |
|
|
|
ih, iw = target_size |
|
h, w, _ = image.shape |
|
|
|
scale = min(iw/w, ih/h) |
|
nw, nh = int(scale * w), int(scale * h) |
|
image_resized = cv2.resize(image, (nw, nh)) |
|
|
|
image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0) |
|
dw, dh = (iw - nw) // 2, (ih-nh) // 2 |
|
image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized |
|
image_padded = image_padded / 255. |
|
|
|
if gt_boxes is None: |
|
return image_padded |
|
|
|
else: |
|
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw |
|
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh |
|
return image_padded, gt_boxes |
|
|
|
input_size = 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sess = rt.InferenceSession("model.onnx") |
|
|
|
outputs = sess.get_outputs() |
|
|
|
|
|
|
|
def get_anchors(anchors_path, tiny=False): |
|
'''loads the anchors from a file''' |
|
with open(anchors_path) as f: |
|
anchors = f.readline() |
|
anchors = np.array(anchors.split(','), dtype=np.float32) |
|
return anchors.reshape(3, 3, 2) |
|
|
|
def postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=[1,1,1]): |
|
'''define anchor boxes''' |
|
for i, pred in enumerate(pred_bbox): |
|
conv_shape = pred.shape |
|
output_size = conv_shape[1] |
|
conv_raw_dxdy = pred[:, :, :, :, 0:2] |
|
conv_raw_dwdh = pred[:, :, :, :, 2:4] |
|
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size)) |
|
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) |
|
|
|
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1]) |
|
xy_grid = xy_grid.astype(np.float) |
|
|
|
pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i] |
|
pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i]) |
|
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1) |
|
|
|
pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox] |
|
pred_bbox = np.concatenate(pred_bbox, axis=0) |
|
return pred_bbox |
|
|
|
|
|
def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold): |
|
'''remove boundary boxs with a low detection probability''' |
|
valid_scale=[0, np.inf] |
|
pred_bbox = np.array(pred_bbox) |
|
|
|
pred_xywh = pred_bbox[:, 0:4] |
|
pred_conf = pred_bbox[:, 4] |
|
pred_prob = pred_bbox[:, 5:] |
|
|
|
|
|
pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5, |
|
pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1) |
|
|
|
org_h, org_w = org_img_shape |
|
resize_ratio = min(input_size / org_w, input_size / org_h) |
|
|
|
dw = (input_size - resize_ratio * org_w) / 2 |
|
dh = (input_size - resize_ratio * org_h) / 2 |
|
|
|
pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio |
|
pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio |
|
|
|
|
|
pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]), |
|
np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1) |
|
invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3])) |
|
pred_coor[invalid_mask] = 0 |
|
|
|
|
|
bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1)) |
|
scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1])) |
|
|
|
|
|
classes = np.argmax(pred_prob, axis=-1) |
|
scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes] |
|
score_mask = scores > score_threshold |
|
mask = np.logical_and(scale_mask, score_mask) |
|
coors, scores, classes = pred_coor[mask], scores[mask], classes[mask] |
|
|
|
return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1) |
|
|
|
def bboxes_iou(boxes1, boxes2): |
|
'''calculate the Intersection Over Union value''' |
|
boxes1 = np.array(boxes1) |
|
boxes2 = np.array(boxes2) |
|
|
|
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) |
|
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) |
|
|
|
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2]) |
|
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:]) |
|
|
|
inter_section = np.maximum(right_down - left_up, 0.0) |
|
inter_area = inter_section[..., 0] * inter_section[..., 1] |
|
union_area = boxes1_area + boxes2_area - inter_area |
|
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps) |
|
|
|
return ious |
|
|
|
def nms(bboxes, iou_threshold, sigma=0.3, method='nms'): |
|
""" |
|
:param bboxes: (xmin, ymin, xmax, ymax, score, class) |
|
|
|
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf |
|
https://github.com/bharatsingh430/soft-nms |
|
""" |
|
classes_in_img = list(set(bboxes[:, 5])) |
|
best_bboxes = [] |
|
|
|
for cls in classes_in_img: |
|
cls_mask = (bboxes[:, 5] == cls) |
|
cls_bboxes = bboxes[cls_mask] |
|
|
|
while len(cls_bboxes) > 0: |
|
max_ind = np.argmax(cls_bboxes[:, 4]) |
|
best_bbox = cls_bboxes[max_ind] |
|
best_bboxes.append(best_bbox) |
|
cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]]) |
|
iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4]) |
|
weight = np.ones((len(iou),), dtype=np.float32) |
|
|
|
assert method in ['nms', 'soft-nms'] |
|
|
|
if method == 'nms': |
|
iou_mask = iou > iou_threshold |
|
weight[iou_mask] = 0.0 |
|
|
|
if method == 'soft-nms': |
|
weight = np.exp(-(1.0 * iou ** 2 / sigma)) |
|
|
|
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight |
|
score_mask = cls_bboxes[:, 4] > 0. |
|
cls_bboxes = cls_bboxes[score_mask] |
|
|
|
return best_bboxes |
|
|
|
def read_class_names(class_file_name): |
|
'''loads class name from a file''' |
|
names = {} |
|
with open(class_file_name, 'r') as data: |
|
for ID, name in enumerate(data): |
|
names[ID] = name.strip('\n') |
|
return names |
|
|
|
def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True): |
|
""" |
|
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates. |
|
""" |
|
|
|
num_classes = len(classes) |
|
image_h, image_w, _ = image.shape |
|
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)] |
|
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) |
|
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) |
|
|
|
random.seed(0) |
|
random.shuffle(colors) |
|
random.seed(None) |
|
|
|
for i, bbox in enumerate(bboxes): |
|
coor = np.array(bbox[:4], dtype=np.int32) |
|
fontScale = 0.5 |
|
score = bbox[4] |
|
class_ind = int(bbox[5]) |
|
bbox_color = colors[class_ind] |
|
bbox_thick = int(0.6 * (image_h + image_w) / 600) |
|
c1, c2 = (coor[0], coor[1]), (coor[2], coor[3]) |
|
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick) |
|
|
|
if show_label: |
|
bbox_mess = '%s: %.2f' % (classes[class_ind], score) |
|
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0] |
|
cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1) |
|
cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX, |
|
fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA) |
|
|
|
return image |
|
|
|
def inference(img): |
|
original_image = cv2.imread(img) |
|
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) |
|
original_image_size = original_image.shape[:2] |
|
|
|
image_data = image_preprocess(np.copy(original_image), [input_size, input_size]) |
|
image_data = image_data[np.newaxis, ...].astype(np.float32) |
|
|
|
print("Preprocessed image shape:",image_data.shape) |
|
|
|
output_names = list(map(lambda output: output.name, outputs)) |
|
input_name = sess.get_inputs()[0].name |
|
|
|
detections = sess.run(output_names, {input_name: image_data}) |
|
print("Output shape:", list(map(lambda detection: detection.shape, detections))) |
|
|
|
ANCHORS = "./yolov4_anchors.txt" |
|
STRIDES = [8, 16, 32] |
|
XYSCALE = [1.2, 1.1, 1.05] |
|
|
|
ANCHORS = get_anchors(ANCHORS) |
|
STRIDES = np.array(STRIDES) |
|
|
|
|
|
|
|
pred_bbox = postprocess_bbbox(detections, ANCHORS, STRIDES, XYSCALE) |
|
bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) |
|
bboxes = nms(bboxes, 0.213, method='nms') |
|
image = draw_bbox(original_image, bboxes) |
|
|
|
image = Image.fromarray(image) |
|
return image |
|
|
|
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil")).launch() |
|
|
|
|