Spaces:
Running
on
Zero
Running
on
Zero
onuralpszr
commited on
feat: ✨ video detection tab added
Browse filesSigned-off-by: Onuralp SEZER <[email protected]>
- .gitattributes +1 -0
- app.py +126 -27
- helpers/__init__.py +0 -0
- helpers/utils.py +25 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -6,37 +6,42 @@ import numpy as np
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import spaces
|
|
|
|
|
9 |
|
10 |
BOX_ANNOTATOR = sv.BoxAnnotator()
|
11 |
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
12 |
MASK_ANNOTATOR = sv.MaskAnnotator()
|
13 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
14 |
|
|
|
15 |
model_id = "google/paligemma2-3b-pt-448"
|
16 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE)
|
17 |
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
@spaces.GPU
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
26 |
input_len = model_inputs["input_ids"].shape[-1]
|
27 |
-
|
28 |
with torch.inference_mode():
|
29 |
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
30 |
generation = generation[0][input_len:]
|
31 |
result = processor.decode(generation, skip_special_tokens=True)
|
|
|
32 |
|
|
|
|
|
33 |
detections = sv.Detections.from_lmm(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
)
|
39 |
-
|
40 |
annotated_image = BOX_ANNOTATOR.annotate(
|
41 |
scene=cv_image.copy(),
|
42 |
detections=detections
|
@@ -52,12 +57,87 @@ def process_image(input_image,input_text,class_names):
|
|
52 |
|
53 |
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
54 |
annotated_image = Image.fromarray(annotated_image)
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return annotated_image, result
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Blocks() as app:
|
59 |
gr.Markdown( """
|
60 |
-
## PaliGemma 2 Detection with Supervision - Demo
|
|
|
|
|
61 |
|
62 |
<div style="display: flex; gap: 10px;">
|
63 |
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
|
@@ -76,8 +156,9 @@ with gr.Blocks() as app:
|
|
76 |
<img src="https://img.shields.io/badge/Supervision-6706CE?style=flat&logo=Roboflow&logoColor=white" alt="Supervision">
|
77 |
</a>
|
78 |
</div>
|
|
|
|
|
79 |
|
80 |
-
\n\n
|
81 |
PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
|
82 |
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
|
83 |
vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile
|
@@ -87,19 +168,37 @@ with gr.Blocks() as app:
|
|
87 |
This space show how to use PaliGemma 2 for object detection with supervision.
|
88 |
You can input an image and a text prompt
|
89 |
""")
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
app.launch()
|
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
+
from helpers.utils import create_directory, delete_directory, generate_unique_name
|
10 |
+
import os
|
11 |
|
12 |
BOX_ANNOTATOR = sv.BoxAnnotator()
|
13 |
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
14 |
MASK_ANNOTATOR = sv.MaskAnnotator()
|
15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
VIDEO_TARGET_DIRECTORY = "tmp"
|
17 |
|
18 |
+
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
19 |
model_id = "google/paligemma2-3b-pt-448"
|
20 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(DEVICE)
|
21 |
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
22 |
|
|
|
|
|
23 |
@spaces.GPU
|
24 |
+
def paligemma_detection(input_image, input_text):
|
25 |
+
model_inputs = processor(text=input_text,
|
26 |
+
images=input_image,
|
27 |
+
return_tensors="pt"
|
28 |
+
).to(torch.bfloat16).to(model.device)
|
29 |
input_len = model_inputs["input_ids"].shape[-1]
|
|
|
30 |
with torch.inference_mode():
|
31 |
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
32 |
generation = generation[0][input_len:]
|
33 |
result = processor.decode(generation, skip_special_tokens=True)
|
34 |
+
return result
|
35 |
|
36 |
+
def annotate_image(result, resolution_wh, class_names, cv_image):
|
37 |
+
|
38 |
detections = sv.Detections.from_lmm(
|
39 |
+
sv.LMM.PALIGEMMA,
|
40 |
+
result,
|
41 |
+
resolution_wh=resolution_wh,
|
42 |
+
classes=class_names.split(',')
|
43 |
)
|
44 |
+
|
45 |
annotated_image = BOX_ANNOTATOR.annotate(
|
46 |
scene=cv_image.copy(),
|
47 |
detections=detections
|
|
|
57 |
|
58 |
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
59 |
annotated_image = Image.fromarray(annotated_image)
|
60 |
+
|
61 |
+
return annotated_image
|
62 |
+
|
63 |
|
64 |
+
def process_image(input_image,input_text,class_names):
|
65 |
+
cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
66 |
+
result = paligemma_detection(input_image, input_text)
|
67 |
+
annotated_image = annotate_image(result,
|
68 |
+
(input_image.width, input_image.height),
|
69 |
+
class_names, cv_image)
|
70 |
return annotated_image, result
|
71 |
|
72 |
+
|
73 |
+
@spaces.GPU
|
74 |
+
def process_video(input_video, input_text, class_names, progress=gr.Progress(track_tqdm=True)):
|
75 |
+
if not input_video:
|
76 |
+
gr.Info("Please upload a video.")
|
77 |
+
return None
|
78 |
+
|
79 |
+
if not input_text:
|
80 |
+
gr.Info("Please enter a text prompt.")
|
81 |
+
return None
|
82 |
+
|
83 |
+
name = generate_unique_name()
|
84 |
+
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
|
85 |
+
create_directory(frame_directory_path)
|
86 |
+
|
87 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
88 |
+
frame_generator = sv.get_video_frames_generator(input_video)
|
89 |
+
video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
|
90 |
+
results = []
|
91 |
+
with sv.VideoSink(video_path, video_info=video_info) as sink:
|
92 |
+
for frame in progress.tqdm(frame_generator, desc="Processing video"):
|
93 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
94 |
+
|
95 |
+
model_inputs = processor(
|
96 |
+
text=input_text,
|
97 |
+
images=pil_frame,
|
98 |
+
return_tensors="pt"
|
99 |
+
).to(torch.bfloat16).to(model.device)
|
100 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
101 |
+
|
102 |
+
with torch.inference_mode():
|
103 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
104 |
+
generation = generation[0][input_len:]
|
105 |
+
result = processor.decode(generation, skip_special_tokens=True)
|
106 |
+
|
107 |
+
|
108 |
+
detections = sv.Detections.from_lmm(
|
109 |
+
sv.LMM.PALIGEMMA,
|
110 |
+
result,
|
111 |
+
resolution_wh=(video_info.width, video_info.height),
|
112 |
+
classes=class_names.split(',')
|
113 |
+
)
|
114 |
+
|
115 |
+
annotated_frame = BOX_ANNOTATOR.annotate(
|
116 |
+
scene=frame.copy(),
|
117 |
+
detections=detections
|
118 |
+
)
|
119 |
+
annotated_frame = LABEL_ANNOTATOR.annotate(
|
120 |
+
scene=annotated_frame,
|
121 |
+
detections=detections
|
122 |
+
)
|
123 |
+
annotated_frame = MASK_ANNOTATOR.annotate(
|
124 |
+
scene=annotated_frame,
|
125 |
+
detections=detections
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
results.append(result)
|
130 |
+
|
131 |
+
sink.write_frame(annotated_frame)
|
132 |
+
|
133 |
+
delete_directory(frame_directory_path)
|
134 |
+
return video_path, results
|
135 |
+
|
136 |
with gr.Blocks() as app:
|
137 |
gr.Markdown( """
|
138 |
+
## PaliGemma 2 Detection with Supervision - Demo
|
139 |
+
|
140 |
+
<br>
|
141 |
|
142 |
<div style="display: flex; gap: 10px;">
|
143 |
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
|
|
|
156 |
<img src="https://img.shields.io/badge/Supervision-6706CE?style=flat&logo=Roboflow&logoColor=white" alt="Supervision">
|
157 |
</a>
|
158 |
</div>
|
159 |
+
|
160 |
+
<br>
|
161 |
|
|
|
162 |
PaliGemma 2 is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
|
163 |
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
|
164 |
vision model and the [Gemma 2](https://arxiv.org/abs/2408.00118) language model. PaliGemma 2 is designed as a versatile
|
|
|
168 |
This space show how to use PaliGemma 2 for object detection with supervision.
|
169 |
You can input an image and a text prompt
|
170 |
""")
|
171 |
+
|
172 |
+
with gr.Tab("Image Detection"):
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Column():
|
175 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
176 |
+
input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog")
|
177 |
+
class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names")
|
178 |
+
with gr.Column():
|
179 |
+
annotated_image = gr.Image(type="pil", label="Annotated Image")
|
180 |
+
detection_result = gr.Textbox(label="Detection Result")
|
181 |
+
gr.Button("Submit").click(
|
182 |
+
fn=process_image,
|
183 |
+
inputs=[input_image, input_text, class_names],
|
184 |
+
outputs=[annotated_image, detection_result]
|
185 |
+
)
|
186 |
+
|
187 |
+
with gr.Tab("Video Detection"):
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column():
|
190 |
+
input_video = gr.Video(label="Input Video")
|
191 |
+
input_text = gr.Textbox(lines=2, placeholder="Enter text here...", label="Enter prompt for example 'detect person;dog")
|
192 |
+
class_names = gr.Textbox(lines=1, placeholder="Enter class names separated by commas...", label="Class Names")
|
193 |
+
with gr.Column():
|
194 |
+
output_video = gr.Video(label="Annotated Video")
|
195 |
+
detection_result = gr.Textbox(label="Detection Result")
|
196 |
+
|
197 |
+
gr.Button("Process Video").click(
|
198 |
+
fn=process_video,
|
199 |
+
inputs=[input_video, input_text, class_names],
|
200 |
+
outputs=[output_video, detection_result]
|
201 |
+
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
app.launch()
|
helpers/__init__.py
ADDED
File without changes
|
helpers/utils.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import uuid
|
5 |
+
|
6 |
+
def create_directory(directory_path: str) -> None:
|
7 |
+
if not os.path.exists(directory_path):
|
8 |
+
os.makedirs(directory_path)
|
9 |
+
|
10 |
+
|
11 |
+
def delete_directory(directory_path: str) -> None:
|
12 |
+
if not os.path.exists(directory_path):
|
13 |
+
raise FileNotFoundError(f"Directory '{directory_path}' does not exist.")
|
14 |
+
|
15 |
+
try:
|
16 |
+
shutil.rmtree(directory_path)
|
17 |
+
except PermissionError:
|
18 |
+
raise PermissionError(
|
19 |
+
f"Permission denied: Unable to delete '{directory_path}'.")
|
20 |
+
|
21 |
+
|
22 |
+
def generate_unique_name():
|
23 |
+
current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
24 |
+
unique_id = uuid.uuid4()
|
25 |
+
return f"{current_datetime}_{unique_id}"
|