Spaces:
Running
on
Zero
Running
on
Zero
onuralpszr
commited on
feat: ✨ For segmentation methods are added
Browse filesSigned-off-by: Onuralp SEZER <[email protected]>
- .gitignore +168 -0
- app.py +68 -9
- helpers/{utils.py → file_utils.py} +0 -0
- helpers/segment_utils.py +190 -0
- requirements.txt +3 -1
.gitignore
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
app.py
CHANGED
@@ -6,7 +6,8 @@ import numpy as np
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
-
from helpers.
|
|
|
10 |
import os
|
11 |
|
12 |
BOX_ANNOTATOR = sv.BoxAnnotator()
|
@@ -14,10 +15,12 @@ LABEL_ANNOTATOR = sv.LabelAnnotator()
|
|
14 |
MASK_ANNOTATOR = sv.MaskAnnotator()
|
15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
VIDEO_TARGET_DIRECTORY = "tmp"
|
|
|
17 |
|
|
|
18 |
|
19 |
INTRO_TEXT = """
|
20 |
-
## PaliGemma 2 Detection with Supervision - Demo
|
21 |
|
22 |
<div style="display: flex; gap: 10px;">
|
23 |
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
|
@@ -60,6 +63,14 @@ def parse_class_names(prompt):
|
|
60 |
classes_text = prompt[7:].strip()
|
61 |
return [cls.strip() for cls in classes_text.split(';') if cls.strip()]
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@spaces.GPU
|
64 |
def paligemma_detection(input_image, input_text, max_new_tokens):
|
65 |
model_inputs = processor(text=input_text,
|
@@ -110,10 +121,58 @@ def annotate_image(result, resolution_wh, prompt, cv_image):
|
|
110 |
|
111 |
def process_image(input_image, input_text, max_new_tokens):
|
112 |
cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return annotated_image, result
|
118 |
|
119 |
|
@@ -188,13 +247,13 @@ def process_video(input_video, input_text, max_new_tokens, progress=gr.Progress(
|
|
188 |
with gr.Blocks() as app:
|
189 |
gr.Markdown(INTRO_TEXT)
|
190 |
|
191 |
-
with gr.Tab("Image Detection"):
|
192 |
with gr.Row():
|
193 |
with gr.Column():
|
194 |
input_image = gr.Image(type="pil", label="Input Image")
|
195 |
input_text = gr.Textbox(
|
196 |
lines=2,
|
197 |
-
placeholder="Enter prompt in format like this: detect person;dog;building",
|
198 |
label="Enter detection prompt"
|
199 |
)
|
200 |
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.")
|
@@ -213,7 +272,7 @@ with gr.Blocks() as app:
|
|
213 |
input_video = gr.Video(label="Input Video")
|
214 |
input_text = gr.Textbox(
|
215 |
lines=2,
|
216 |
-
placeholder="Enter prompt in format like this: detect person;dog;building",
|
217 |
label="Enter detection prompt"
|
218 |
)
|
219 |
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.")
|
|
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import spaces
|
9 |
+
from helpers.file_utils import create_directory, delete_directory, generate_unique_name
|
10 |
+
from helpers.segment_utils import parse_segmentation, extract_objs
|
11 |
import os
|
12 |
|
13 |
BOX_ANNOTATOR = sv.BoxAnnotator()
|
|
|
15 |
MASK_ANNOTATOR = sv.MaskAnnotator()
|
16 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
VIDEO_TARGET_DIRECTORY = "tmp"
|
18 |
+
VAE_MODEL = "vae-oid.npz"
|
19 |
|
20 |
+
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
21 |
|
22 |
INTRO_TEXT = """
|
23 |
+
## PaliGemma 2 Detection/Segmentation with Supervision - Demo
|
24 |
|
25 |
<div style="display: flex; gap: 10px;">
|
26 |
<a href="https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md">
|
|
|
63 |
classes_text = prompt[7:].strip()
|
64 |
return [cls.strip() for cls in classes_text.split(';') if cls.strip()]
|
65 |
|
66 |
+
def parse_prompt_type(prompt):
|
67 |
+
"""Determine if the prompt is for detection or segmentation."""
|
68 |
+
if prompt.lower().startswith('detect '):
|
69 |
+
return 'detection', prompt[7:].strip()
|
70 |
+
elif prompt.lower().startswith('segment '):
|
71 |
+
return 'segmentation', prompt[8:].strip()
|
72 |
+
return None, prompt
|
73 |
+
|
74 |
@spaces.GPU
|
75 |
def paligemma_detection(input_image, input_text, max_new_tokens):
|
76 |
model_inputs = processor(text=input_text,
|
|
|
121 |
|
122 |
def process_image(input_image, input_text, max_new_tokens):
|
123 |
cv_image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
124 |
+
prompt_type, cleaned_prompt = parse_prompt_type(input_text)
|
125 |
+
|
126 |
+
if prompt_type == 'detection':
|
127 |
+
# Existing detection logic
|
128 |
+
result = paligemma_detection(input_image, input_text, max_new_tokens)
|
129 |
+
class_names = [cls.strip() for cls in cleaned_prompt.split(';') if cls.strip()]
|
130 |
+
|
131 |
+
detections = sv.Detections.from_lmm(
|
132 |
+
sv.LMM.PALIGEMMA,
|
133 |
+
result,
|
134 |
+
resolution_wh=(input_image.width, input_image.height),
|
135 |
+
classes=class_names
|
136 |
+
)
|
137 |
+
|
138 |
+
annotated_image = BOX_ANNOTATOR.annotate(scene=cv_image.copy(), detections=detections)
|
139 |
+
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
140 |
+
annotated_image = MASK_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
141 |
+
|
142 |
+
elif prompt_type == 'segmentation':
|
143 |
+
# Use parse_segmentation for segmentation tasks
|
144 |
+
result = paligemma_detection(input_image, input_text, max_new_tokens)
|
145 |
+
input_image, annotations = parse_segmentation(input_image, result)
|
146 |
+
|
147 |
+
# Create annotated image
|
148 |
+
annotated_image = cv_image.copy()
|
149 |
+
for mask, label in annotations:
|
150 |
+
if isinstance(mask, np.ndarray): # If it's a segmentation mask
|
151 |
+
# Create colored mask
|
152 |
+
color_idx = hash(label) % len(COLORS)
|
153 |
+
color = tuple(int(COLORS[color_idx].lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
|
154 |
+
colored_mask = np.zeros_like(cv_image)
|
155 |
+
colored_mask[mask > 0] = color
|
156 |
+
|
157 |
+
# Blend mask with image
|
158 |
+
alpha = 0.5
|
159 |
+
annotated_image = cv2.addWeighted(annotated_image, 1, colored_mask, alpha, 0)
|
160 |
+
|
161 |
+
# Add label where mask starts
|
162 |
+
y_coords, x_coords = np.where(mask > 0)
|
163 |
+
if len(y_coords) > 0 and len(x_coords) > 0:
|
164 |
+
label_y = y_coords.min()
|
165 |
+
label_x = x_coords.min()
|
166 |
+
cv2.putText(annotated_image, label, (label_x, label_y-10),
|
167 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
|
168 |
+
else:
|
169 |
+
gr.Warning("Invalid prompt format. Please use 'detect' or 'segment' followed by class names")
|
170 |
+
return input_image, "Invalid prompt format"
|
171 |
+
|
172 |
+
# Convert back to RGB for display
|
173 |
+
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
174 |
+
annotated_image = Image.fromarray(annotated_image)
|
175 |
+
|
176 |
return annotated_image, result
|
177 |
|
178 |
|
|
|
247 |
with gr.Blocks() as app:
|
248 |
gr.Markdown(INTRO_TEXT)
|
249 |
|
250 |
+
with gr.Tab("Image Detection/Segmentation"):
|
251 |
with gr.Row():
|
252 |
with gr.Column():
|
253 |
input_image = gr.Image(type="pil", label="Input Image")
|
254 |
input_text = gr.Textbox(
|
255 |
lines=2,
|
256 |
+
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
|
257 |
label="Enter detection prompt"
|
258 |
)
|
259 |
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=10, label="Max New Tokens", info="Set to larger for longer generation.")
|
|
|
272 |
input_video = gr.Video(label="Input Video")
|
273 |
input_text = gr.Textbox(
|
274 |
lines=2,
|
275 |
+
placeholder="Enter prompt in format like this: detect person;dog;building or segment person;dog;building",
|
276 |
label="Enter detection prompt"
|
277 |
)
|
278 |
max_new_tokens = gr.Slider(minimum=20, maximum=200, value=100, step=1, label="Max New Tokens", info="Set to larger for longer generation.")
|
helpers/{utils.py → file_utils.py}
RENAMED
File without changes
|
helpers/segment_utils.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import flax.linen as nn
|
2 |
+
import jax
|
3 |
+
import jax.numpy as jnp
|
4 |
+
import re
|
5 |
+
import numpy as np
|
6 |
+
import functools
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
### Postprocessing Utils for Segmentation Tokens
|
10 |
+
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
11 |
+
|
12 |
+
_MODEL_PATH = 'vae-oid.npz'
|
13 |
+
|
14 |
+
_SEGMENT_DETECT_RE = re.compile(
|
15 |
+
r'(.*?)' +
|
16 |
+
r'<loc(\d{4})>' * 4 + r'\s*' +
|
17 |
+
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
18 |
+
r'\s*([^;<>]+)? ?(?:; )?',
|
19 |
+
)
|
20 |
+
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
21 |
+
|
22 |
+
|
23 |
+
def parse_segmentation(input_image,inference_output):
|
24 |
+
objs = extract_objs(inference_output.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
|
25 |
+
labels = set(obj.get('name') for obj in objs if obj.get('name'))
|
26 |
+
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
|
27 |
+
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
|
28 |
+
annotated_img = (
|
29 |
+
input_image,
|
30 |
+
[
|
31 |
+
(
|
32 |
+
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
|
33 |
+
obj['name'] or '',
|
34 |
+
)
|
35 |
+
for obj in objs
|
36 |
+
if 'mask' in obj or 'xyxy' in obj
|
37 |
+
],
|
38 |
+
)
|
39 |
+
has_annotations = bool(annotated_img[1])
|
40 |
+
return annotated_img
|
41 |
+
|
42 |
+
|
43 |
+
def _get_params(checkpoint):
|
44 |
+
"""Converts PyTorch checkpoint to Flax params."""
|
45 |
+
|
46 |
+
def transp(kernel):
|
47 |
+
return np.transpose(kernel, (2, 3, 1, 0))
|
48 |
+
|
49 |
+
def conv(name):
|
50 |
+
return {
|
51 |
+
'bias': checkpoint[name + '.bias'],
|
52 |
+
'kernel': transp(checkpoint[name + '.weight']),
|
53 |
+
}
|
54 |
+
|
55 |
+
def resblock(name):
|
56 |
+
return {
|
57 |
+
'Conv_0': conv(name + '.0'),
|
58 |
+
'Conv_1': conv(name + '.2'),
|
59 |
+
'Conv_2': conv(name + '.4'),
|
60 |
+
}
|
61 |
+
|
62 |
+
return {
|
63 |
+
'_embeddings': checkpoint['_vq_vae._embedding'],
|
64 |
+
'Conv_0': conv('decoder.0'),
|
65 |
+
'ResBlock_0': resblock('decoder.2.net'),
|
66 |
+
'ResBlock_1': resblock('decoder.3.net'),
|
67 |
+
'ConvTranspose_0': conv('decoder.4'),
|
68 |
+
'ConvTranspose_1': conv('decoder.6'),
|
69 |
+
'ConvTranspose_2': conv('decoder.8'),
|
70 |
+
'ConvTranspose_3': conv('decoder.10'),
|
71 |
+
'Conv_1': conv('decoder.12'),
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
|
76 |
+
batch_size, num_tokens = codebook_indices.shape
|
77 |
+
assert num_tokens == 16, codebook_indices.shape
|
78 |
+
unused_num_embeddings, embedding_dim = embeddings.shape
|
79 |
+
|
80 |
+
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
|
81 |
+
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
|
82 |
+
return encodings
|
83 |
+
|
84 |
+
|
85 |
+
@functools.cache
|
86 |
+
def _get_reconstruct_masks():
|
87 |
+
"""Reconstructs masks from codebook indices.
|
88 |
+
Returns:
|
89 |
+
A function that expects indices shaped `[B, 16]` of dtype int32, each
|
90 |
+
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
|
91 |
+
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
|
92 |
+
"""
|
93 |
+
|
94 |
+
class ResBlock(nn.Module):
|
95 |
+
features: int
|
96 |
+
|
97 |
+
@nn.compact
|
98 |
+
def __call__(self, x):
|
99 |
+
original_x = x
|
100 |
+
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
101 |
+
x = nn.relu(x)
|
102 |
+
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
103 |
+
x = nn.relu(x)
|
104 |
+
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
|
105 |
+
return x + original_x
|
106 |
+
|
107 |
+
class Decoder(nn.Module):
|
108 |
+
"""Upscales quantized vectors to mask."""
|
109 |
+
|
110 |
+
@nn.compact
|
111 |
+
def __call__(self, x):
|
112 |
+
num_res_blocks = 2
|
113 |
+
dim = 128
|
114 |
+
num_upsample_layers = 4
|
115 |
+
|
116 |
+
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
|
117 |
+
x = nn.relu(x)
|
118 |
+
|
119 |
+
for _ in range(num_res_blocks):
|
120 |
+
x = ResBlock(features=dim)(x)
|
121 |
+
|
122 |
+
for _ in range(num_upsample_layers):
|
123 |
+
x = nn.ConvTranspose(
|
124 |
+
features=dim,
|
125 |
+
kernel_size=(4, 4),
|
126 |
+
strides=(2, 2),
|
127 |
+
padding=2,
|
128 |
+
transpose_kernel=True,
|
129 |
+
)(x)
|
130 |
+
x = nn.relu(x)
|
131 |
+
dim //= 2
|
132 |
+
|
133 |
+
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
|
134 |
+
|
135 |
+
return x
|
136 |
+
|
137 |
+
def reconstruct_masks(codebook_indices):
|
138 |
+
quantized = _quantized_values_from_codebook_indices(
|
139 |
+
codebook_indices, params['_embeddings']
|
140 |
+
)
|
141 |
+
return Decoder().apply({'params': params}, quantized)
|
142 |
+
|
143 |
+
with open(_MODEL_PATH, 'rb') as f:
|
144 |
+
params = _get_params(dict(np.load(f)))
|
145 |
+
|
146 |
+
return jax.jit(reconstruct_masks, backend='cpu')
|
147 |
+
def extract_objs(text, width, height, unique_labels=False):
|
148 |
+
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
149 |
+
objs = []
|
150 |
+
seen = set()
|
151 |
+
while text:
|
152 |
+
m = _SEGMENT_DETECT_RE.match(text)
|
153 |
+
if not m:
|
154 |
+
break
|
155 |
+
print("m", m)
|
156 |
+
gs = list(m.groups())
|
157 |
+
before = gs.pop(0)
|
158 |
+
name = gs.pop()
|
159 |
+
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
|
160 |
+
|
161 |
+
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
|
162 |
+
seg_indices = gs[4:20]
|
163 |
+
if seg_indices[0] is None:
|
164 |
+
mask = None
|
165 |
+
else:
|
166 |
+
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
167 |
+
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
|
168 |
+
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
169 |
+
m64 = Image.fromarray((m64 * 255).astype('uint8'))
|
170 |
+
mask = np.zeros([height, width])
|
171 |
+
if y2 > y1 and x2 > x1:
|
172 |
+
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
|
173 |
+
|
174 |
+
content = m.group()
|
175 |
+
if before:
|
176 |
+
objs.append(dict(content=before))
|
177 |
+
content = content[len(before):]
|
178 |
+
while unique_labels and name in seen:
|
179 |
+
name = (name or '') + "'"
|
180 |
+
seen.add(name)
|
181 |
+
objs.append(dict(
|
182 |
+
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
|
183 |
+
text = text[len(before) + len(content):]
|
184 |
+
|
185 |
+
if text:
|
186 |
+
objs.append(dict(content=text))
|
187 |
+
|
188 |
+
return objs
|
189 |
+
|
190 |
+
#########
|
requirements.txt
CHANGED
@@ -3,4 +3,6 @@ transformers==4.47.0
|
|
3 |
requests
|
4 |
tqdm
|
5 |
spaces
|
6 |
-
torch
|
|
|
|
|
|
3 |
requests
|
4 |
tqdm
|
5 |
spaces
|
6 |
+
torch
|
7 |
+
jax
|
8 |
+
flax
|