alozowski
Force redownload new contents dataset
35850da
raw
history blame
19.9 kB
import logging
import time
import schedule
import datetime
import gradio as gr
from threading import Thread
import datasets
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
Precision,
WeightType,
fields,
EvalQueueColumn
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
AGGREGATED_REPO,
HF_TOKEN,
QUEUE_REPO,
REPO_ID,
VOTES_REPO,
VOTES_PATH,
HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.voting.vote_system import VoteManager, run_scheduler
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
NEW_DATA_ON_LEADERBOARD = True
LEADERBOARD_DF = None
def restart_space():
try:
logging.info(f"Attempting to restart space with repo ID: {REPO_ID}")
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
logging.info("Space restarted successfully.")
except Exception as e:
logging.error(f"Failed to restart space: {e}")
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def get_latest_data_leaderboard(leaderboard_initial_df=None):
global NEW_DATA_ON_LEADERBOARD
global LEADERBOARD_DF
if NEW_DATA_ON_LEADERBOARD:
print("Leaderboard updated at reload!")
leaderboard_dataset = datasets.load_dataset(
AGGREGATED_REPO,
"default",
split="train",
cache_dir=None, # Disable cache directory usage
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, # Always download fresh data
verification_mode="no_checks"
)
LEADERBOARD_DF = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
NEW_DATA_ON_LEADERBOARD = False
else:
LEADERBOARD_DF = leaderboard_initial_df
return LEADERBOARD_DF
def get_latest_data_queue():
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return eval_queue_dfs
def init_space():
"""Initializes the application space, loading only necessary data."""
global NEW_DATA_ON_LEADERBOARD
NEW_DATA_ON_LEADERBOARD = True # Ensure new data is always pulled on restart
if DO_FULL_INIT:
# These downloads only occur on full initialization
try:
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_dataset(VOTES_REPO, VOTES_PATH)
except Exception:
restart_space()
# Always redownload the leaderboard DataFrame
global LEADERBOARD_DF
LEADERBOARD_DF = get_latest_data_leaderboard()
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_latest_data_queue()
return LEADERBOARD_DF, eval_queue_dfs
# Initialize VoteManager
vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO)
# Schedule the upload_votes method to run every 15 minutes
schedule.every(15).minutes.do(vote_manager.upload_votes)
# Start the scheduler in a separate thread
scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True)
scheduler_thread.start()
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
LEADERBOARD_DF, eval_queue_dfs = init_space()
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Function to check if a user is logged in
def check_login(profile: gr.OAuthProfile | None) -> bool:
if profile is None:
return False
return True
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
ColumnFilter(
AutoEvalColumn.merged.name, type="boolean", label="Merge/MoErge", default=True
),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
ColumnFilter(AutoEvalColumn.maintainers_highlight.name, type="boolean", label="Show only maintainer's highlight", default=False),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
main_block = gr.Blocks(css=custom_css)
with main_block:
with gr.Row(elem_id="header-row"):
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸš€ Submit ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
login_button = gr.LoginButton(elem_id="oauth-button")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="latest")
with gr.Row():
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
chat_template_toggle = gr.Checkbox(
label="Use chat template",
value=False,
info="Is your model a chat model?",
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value=WeightType.Original.value.name,
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False)
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False,
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
# The chat template checkbox update function
def update_chat_checkbox(model_type_value):
return ModelType.from_str(model_type_value) == ModelType.chat
model_type.change(
fn=update_chat_checkbox,
inputs=[model_type], # Pass the current checkbox value
outputs=chat_template_toggle,
)
# The base_model_name_textbox interactivity and value reset function
def update_base_model_name_textbox(weight_type_value):
# Convert the dropdown value back to the corresponding WeightType Enum
weight_type_enum = WeightType[weight_type_value]
# Determine if the textbox should be interactive
interactive = weight_type_enum in [WeightType.Adapter, WeightType.Delta]
# Reset the value if weight type is "Original"
reset_value = "" if not interactive else None
return gr.update(interactive=interactive, value=reset_value)
weight_type.change(
fn=update_base_model_name_textbox,
inputs=[weight_type],
outputs=[base_model_name_textbox],
)
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
chat_template_toggle,
],
submission_result,
)
# Ensure the values in 'pending_eval_queue_df' are correct and ready for the DataFrame component
with gr.TabItem("πŸ†™ Model Vote"):
with gr.Row():
gr.Markdown(
"## Vote for the models which should be evaluated first! \nYou'll need to sign in with the button above first. All votes are recorded.",
elem_classes="markdown-text"
)
login_button = gr.LoginButton(elem_id="oauth-button")
with gr.Row():
pending_models = pending_eval_queue_df[EvalQueueColumn.model_name.name].to_list()
with gr.Column():
selected_model = gr.Dropdown(
choices=pending_models,
label="Models",
multiselect=False,
value="str",
interactive=True,
)
vote_button = gr.Button("Vote", variant="primary")
with gr.Row():
with gr.Accordion(
f"Available models pending ({len(pending_eval_queue_df)})",
open=True,
):
with gr.Row():
pending_eval_table_votes = gr.components.Dataframe(
value=vote_manager.create_request_vote_df(
pending_eval_queue_df
),
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
interactive=False
)
# Set the click event for the vote button
vote_button.click(
vote_manager.add_vote,
inputs=[selected_model, pending_eval_table],
outputs=[pending_eval_table_votes]
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard])
leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table])
pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes])
main_block.queue(default_concurrency_limit=40)
def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer:
# Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61
# Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks.
# ht to Lucain!
if SPACE_ID is None:
print("Not in a Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
if IS_EPHEMERAL_SPACE:
print("In an ephemeral Space: Space CI disabled.")
return WebhooksServer(ui=main_block)
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space")
config = card.data.get("space_ci", {})
print(f"Enabling Space CI with config from README: {config}")
return configure_space_ci(
blocks=ui,
trusted_authors=config.get("trusted_authors"),
private=config.get("private", "auto"),
variables=config.get("variables", "auto"),
secrets=config.get("secrets"),
hardware=config.get("hardware"),
storage=config.get("storage"),
)
# Create webhooks server (with CI url if in Space and not ephemeral)
webhooks_server = enable_space_ci_and_return_server(ui=main_block)
# Add webhooks
@webhooks_server.add_webhook
def update_leaderboard(payload: WebhookPayload) -> None:
"""Redownloads the leaderboard dataset each time it updates."""
if payload.repo.type == "dataset" and payload.event.action == "update":
global NEW_DATA_ON_LEADERBOARD
if NEW_DATA_ON_LEADERBOARD:
logging.info("Leaderboard data is already marked for update, skipping...")
return
logging.info("New data detected, downloading updated leaderboard dataset.")
NEW_DATA_ON_LEADERBOARD = True
# Download the latest version of the dataset
datasets.load_dataset(
AGGREGATED_REPO,
"default",
split="train",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD,
verification_mode="no_checks"
)
logging.info("Leaderboard dataset successfully downloaded.")
# The below code is not used at the moment, as we can manage the queue file locally
LAST_UPDATE_QUEUE = datetime.datetime.now()
@webhooks_server.add_webhook
def update_queue(payload: WebhookPayload) -> None:
"""Redownloads the queue dataset each time it updates"""
if payload.repo.type == "dataset" and payload.event.action == "update":
current_time = datetime.datetime.now()
global LAST_UPDATE_QUEUE
if current_time - LAST_UPDATE_QUEUE > datetime.timedelta(minutes=10):
print("Would have updated the queue")
# We only redownload is last update was more than 10 minutes ago, as the queue is
# updated regularly and heavy to download
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
LAST_UPDATE_QUEUE = datetime.datetime.now()
webhooks_server.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=1) # Restart every 3h
logging.info("Scheduler initialized to restart space every 1 hour.")
scheduler.start()