Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from datetime import datetime, timezone | |
from typing import Dict, Any, Optional, List | |
import json | |
import os | |
from pathlib import Path | |
import logging | |
import aiohttp | |
import asyncio | |
import time | |
from huggingface_hub import HfApi, CommitOperationAdd | |
from huggingface_hub.utils import build_hf_headers | |
import datasets | |
from datasets import load_dataset, disable_progress_bar | |
import sys | |
import contextlib | |
from concurrent.futures import ThreadPoolExecutor | |
import tempfile | |
from app.config import ( | |
QUEUE_REPO, | |
HF_TOKEN, | |
EVAL_REQUESTS_PATH | |
) | |
from app.config.hf_config import HF_ORGANIZATION | |
from app.services.hf_service import HuggingFaceService | |
from app.utils.model_validation import ModelValidator | |
from app.services.votes import VoteService | |
from app.core.cache import cache_config | |
from app.utils.logging import LogFormatter | |
# Disable datasets progress bars globally | |
disable_progress_bar() | |
logger = logging.getLogger(__name__) | |
# Context manager to temporarily disable stdout and stderr | |
def suppress_output(): | |
stdout = sys.stdout | |
stderr = sys.stderr | |
devnull = open(os.devnull, 'w') | |
try: | |
sys.stdout = devnull | |
sys.stderr = devnull | |
yield | |
finally: | |
sys.stdout = stdout | |
sys.stderr = stderr | |
devnull.close() | |
class ProgressTracker: | |
def __init__(self, total: int, desc: str = "Progress", update_frequency: int = 10): | |
self.total = total | |
self.current = 0 | |
self.desc = desc | |
self.start_time = time.time() | |
self.update_frequency = update_frequency # Percentage steps | |
self.last_update = -1 | |
# Initial log with fancy formatting | |
logger.info(LogFormatter.section(desc)) | |
logger.info(LogFormatter.info(f"Starting processing of {total:,} items...")) | |
sys.stdout.flush() | |
def update(self, n: int = 1): | |
self.current += n | |
current_percentage = (self.current * 100) // self.total | |
# Only update on frequency steps (e.g., 0%, 10%, 20%, etc.) | |
if current_percentage >= self.last_update + self.update_frequency or current_percentage == 100: | |
elapsed = time.time() - self.start_time | |
rate = self.current / elapsed if elapsed > 0 else 0 | |
remaining = (self.total - self.current) / rate if rate > 0 else 0 | |
# Create progress stats | |
stats = { | |
"Progress": LogFormatter.progress_bar(self.current, self.total), | |
"Items": f"{self.current:,}/{self.total:,}", | |
"Time": f"⏱️ {elapsed:.1f}s elapsed, {remaining:.1f}s remaining", | |
"Rate": f"🚀 {rate:.1f} items/s" | |
} | |
# Log progress using tree format | |
for line in LogFormatter.tree(stats): | |
logger.info(line) | |
sys.stdout.flush() | |
self.last_update = (current_percentage // self.update_frequency) * self.update_frequency | |
def close(self): | |
elapsed = time.time() - self.start_time | |
rate = self.total / elapsed if elapsed > 0 else 0 | |
# Final summary with fancy formatting | |
logger.info(LogFormatter.section("COMPLETED")) | |
stats = { | |
"Total": f"{self.total:,} items", | |
"Time": f"{elapsed:.1f}s", | |
"Rate": f"{rate:.1f} items/s" | |
} | |
for line in LogFormatter.stats(stats): | |
logger.info(line) | |
logger.info("="*50) | |
sys.stdout.flush() | |
class ModelService(HuggingFaceService): | |
_instance: Optional['ModelService'] = None | |
_initialized = False | |
def __new__(cls): | |
if cls._instance is None: | |
logger.info(LogFormatter.info("Creating new ModelService instance")) | |
cls._instance = super(ModelService, cls).__new__(cls) | |
return cls._instance | |
def __init__(self): | |
if not hasattr(self, '_init_done'): | |
logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION")) | |
super().__init__() | |
self.validator = ModelValidator() | |
self.vote_service = VoteService() | |
self.eval_requests_path = cache_config.eval_requests_file | |
logger.info(LogFormatter.info(f"Using eval requests path: {self.eval_requests_path}")) | |
self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True) | |
self.hf_api = HfApi(token=HF_TOKEN) | |
self.cached_models = None | |
self.last_cache_update = 0 | |
self.cache_ttl = cache_config.cache_ttl.total_seconds() | |
self._init_done = True | |
logger.info(LogFormatter.success("Initialization complete")) | |
async def _download_and_process_file(self, file: str, session: aiohttp.ClientSession, progress: ProgressTracker) -> Optional[Dict]: | |
"""Download and process a file asynchronously""" | |
try: | |
# Build file URL | |
url = f"https://huggingface.co/datasets/{QUEUE_REPO}/resolve/main/{file}" | |
headers = build_hf_headers(token=self.token) | |
# Download file | |
async with session.get(url, headers=headers) as response: | |
if response.status != 200: | |
logger.error(LogFormatter.error(f"Failed to download {file}", f"HTTP {response.status}")) | |
progress.update() | |
return None | |
try: | |
# First read content as text | |
text_content = await response.text() | |
# Then parse JSON | |
content = json.loads(text_content) | |
except json.JSONDecodeError as e: | |
logger.error(LogFormatter.error(f"Failed to decode JSON from {file}", e)) | |
progress.update() | |
return None | |
# Get status and determine target status | |
status = content.get("status", "PENDING").upper() | |
target_status = None | |
status_map = { | |
"PENDING": ["PENDING", "RERUN"], | |
"EVALUATING": ["RUNNING"], | |
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"] | |
} | |
for target, source_statuses in status_map.items(): | |
if status in source_statuses: | |
target_status = target | |
break | |
if not target_status: | |
progress.update() | |
return None | |
# Calculate wait time | |
try: | |
submit_time = datetime.fromisoformat(content["submitted_time"].replace("Z", "+00:00")) | |
if submit_time.tzinfo is None: | |
submit_time = submit_time.replace(tzinfo=timezone.utc) | |
current_time = datetime.now(timezone.utc) | |
wait_time = current_time - submit_time | |
model_info = { | |
"name": content["model"], | |
"submitter": content.get("sender", "Unknown"), | |
"revision": content["revision"], | |
"wait_time": f"{wait_time.total_seconds():.1f}s", | |
"submission_time": content["submitted_time"], | |
"status": target_status, | |
"precision": content.get("precision", "Unknown") | |
} | |
progress.update() | |
return model_info | |
except (ValueError, TypeError) as e: | |
logger.error(LogFormatter.error(f"Failed to process {file}", e)) | |
progress.update() | |
return None | |
except Exception as e: | |
logger.error(LogFormatter.error(f"Failed to load {file}", e)) | |
progress.update() | |
return None | |
async def _refresh_models_cache(self): | |
"""Refresh the models cache""" | |
try: | |
logger.info(LogFormatter.section("CACHE REFRESH")) | |
self._log_repo_operation("read", f"{HF_ORGANIZATION}/requests", "Refreshing models cache") | |
# Initialize models dictionary | |
models = { | |
"finished": [], | |
"evaluating": [], | |
"pending": [] | |
} | |
try: | |
logger.info(LogFormatter.subsection("DATASET LOADING")) | |
logger.info(LogFormatter.info("Loading dataset files...")) | |
# List files in repository | |
with suppress_output(): | |
files = self.hf_api.list_repo_files( | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
token=self.token | |
) | |
# Filter JSON files | |
json_files = [f for f in files if f.endswith('.json')] | |
total_files = len(json_files) | |
# Log repository stats | |
stats = { | |
"Total_Files": len(files), | |
"JSON_Files": total_files, | |
} | |
for line in LogFormatter.stats(stats, "Repository Statistics"): | |
logger.info(line) | |
if not json_files: | |
raise Exception("No JSON files found in repository") | |
# Initialize progress tracker | |
progress = ProgressTracker(total_files, "PROCESSING FILES") | |
try: | |
# Create aiohttp session to reuse connections | |
async with aiohttp.ClientSession() as session: | |
# Process files in chunks | |
chunk_size = 50 | |
for i in range(0, len(json_files), chunk_size): | |
chunk = json_files[i:i + chunk_size] | |
chunk_tasks = [ | |
self._download_and_process_file(file, session, progress) | |
for file in chunk | |
] | |
results = await asyncio.gather(*chunk_tasks) | |
# Process results | |
for result in results: | |
if result: | |
status = result.pop("status") | |
models[status.lower()].append(result) | |
finally: | |
progress.close() | |
# Final summary with fancy formatting | |
logger.info(LogFormatter.section("CACHE SUMMARY")) | |
stats = { | |
"Finished": len(models["finished"]), | |
"Evaluating": len(models["evaluating"]), | |
"Pending": len(models["pending"]) | |
} | |
for line in LogFormatter.stats(stats, "Models by Status"): | |
logger.info(line) | |
logger.info("="*50) | |
except Exception as e: | |
logger.error(LogFormatter.error("Error processing files", e)) | |
raise | |
# Update cache | |
self.cached_models = models | |
self.last_cache_update = time.time() | |
logger.info(LogFormatter.success("Cache updated successfully")) | |
return models | |
except Exception as e: | |
logger.error(LogFormatter.error("Cache refresh failed", e)) | |
raise | |
async def initialize(self): | |
"""Initialize the model service""" | |
if self._initialized: | |
logger.info(LogFormatter.info("Service already initialized, using cached data")) | |
return | |
try: | |
logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION")) | |
# Check if cache already exists | |
cache_path = cache_config.get_cache_path("datasets") | |
if not cache_path.exists() or not any(cache_path.iterdir()): | |
logger.info(LogFormatter.info("No existing cache found, initializing datasets cache...")) | |
cache_config.flush_cache("datasets") | |
else: | |
logger.info(LogFormatter.info("Using existing datasets cache")) | |
# Ensure eval requests directory exists | |
self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True) | |
logger.info(LogFormatter.info(f"Eval requests directory: {self.eval_requests_path}")) | |
# List existing files | |
if self.eval_requests_path.exists(): | |
files = list(self.eval_requests_path.glob("**/*.json")) | |
stats = { | |
"Total_Files": len(files), | |
"Directory": str(self.eval_requests_path) | |
} | |
for line in LogFormatter.stats(stats, "Eval Requests"): | |
logger.info(line) | |
# Load initial cache | |
await self._refresh_models_cache() | |
self._initialized = True | |
logger.info(LogFormatter.success("Model service initialization complete")) | |
except Exception as e: | |
logger.error(LogFormatter.error("Initialization failed", e)) | |
raise | |
async def get_models(self) -> Dict[str, List[Dict[str, Any]]]: | |
"""Get all models with their status""" | |
if not self._initialized: | |
logger.info(LogFormatter.info("Service not initialized, initializing now...")) | |
await self.initialize() | |
current_time = time.time() | |
cache_age = current_time - self.last_cache_update | |
# Check if cache needs refresh | |
if not self.cached_models: | |
logger.info(LogFormatter.info("No cached data available, refreshing cache...")) | |
return await self._refresh_models_cache() | |
elif cache_age > self.cache_ttl: | |
logger.info(LogFormatter.info(f"Cache expired ({cache_age:.1f}s old, TTL: {self.cache_ttl}s)")) | |
return await self._refresh_models_cache() | |
else: | |
logger.info(LogFormatter.info(f"Using cached data ({cache_age:.1f}s old)")) | |
return self.cached_models | |
async def submit_model( | |
self, | |
model_data: Dict[str, Any], | |
user_id: str | |
) -> Dict[str, Any]: | |
logger.info(LogFormatter.section("MODEL SUBMISSION")) | |
self._log_repo_operation("write", f"{HF_ORGANIZATION}/requests", f"Submitting model {model_data['model_id']} by {user_id}") | |
stats = { | |
"Model": model_data["model_id"], | |
"User": user_id, | |
"Revision": model_data["revision"], | |
"Precision": model_data["precision"], | |
"Type": model_data["model_type"] | |
} | |
for line in LogFormatter.tree(stats, "Submission Details"): | |
logger.info(line) | |
# Validate required fields | |
required_fields = [ | |
"model_id", "base_model", "revision", "precision", | |
"weight_type", "model_type", "use_chat_template" | |
] | |
for field in required_fields: | |
if field not in model_data: | |
raise ValueError(f"Missing required field: {field}") | |
# Check if model already exists in the system | |
try: | |
logger.info(LogFormatter.subsection("CHECKING EXISTING SUBMISSIONS")) | |
existing_models = await self.get_models() | |
# Check in all statuses (pending, evaluating, finished) | |
for status, models in existing_models.items(): | |
for model in models: | |
if model["name"] == model_data["model_id"]: | |
error_msg = f"Model {model_data['model_id']} is already in the system with status: {status}" | |
logger.error(LogFormatter.error("Submission rejected", error_msg)) | |
raise ValueError(error_msg) | |
logger.info(LogFormatter.success("No existing submission found")) | |
except ValueError: | |
raise | |
except Exception as e: | |
logger.error(LogFormatter.error("Failed to check existing submissions", e)) | |
raise | |
# Get model info and validate it exists on HuggingFace | |
try: | |
logger.info(LogFormatter.subsection("MODEL VALIDATION")) | |
# Get the model info to check if it exists | |
model_info = self.hf_api.model_info( | |
model_data["model_id"], | |
revision=model_data["revision"], | |
token=self.token | |
) | |
if not model_info: | |
raise Exception(f"Model {model_data['model_id']} not found on HuggingFace Hub") | |
logger.info(LogFormatter.success("Model exists on HuggingFace Hub")) | |
except Exception as e: | |
logger.error(LogFormatter.error("Model validation failed", e)) | |
raise | |
# Validate model card | |
valid, error, model_card = await self.validator.check_model_card( | |
model_data["model_id"] | |
) | |
if not valid: | |
logger.error(LogFormatter.error("Model card validation failed", error)) | |
raise Exception(error) | |
logger.info(LogFormatter.success("Model card validation passed")) | |
# Check size limits | |
model_size, error = await self.validator.get_model_size( | |
model_info, | |
model_data["precision"], | |
model_data["base_model"] | |
) | |
if model_size is None: | |
logger.error(LogFormatter.error("Model size validation failed", error)) | |
raise Exception(error) | |
logger.info(LogFormatter.success(f"Model size validation passed: {model_size:.1f}GB")) | |
# Size limits based on precision | |
if model_data["precision"] in ["float16", "bfloat16"] and model_size > 100: | |
error_msg = f"Model too large for {model_data['precision']} (limit: 100GB)" | |
logger.error(LogFormatter.error("Size limit exceeded", error_msg)) | |
raise Exception(error_msg) | |
# Chat template validation if requested | |
if model_data["use_chat_template"]: | |
valid, error = await self.validator.check_chat_template( | |
model_data["model_id"], | |
model_data["revision"] | |
) | |
if not valid: | |
logger.error(LogFormatter.error("Chat template validation failed", error)) | |
raise Exception(error) | |
logger.info(LogFormatter.success("Chat template validation passed")) | |
# Create eval entry | |
eval_entry = { | |
"model": model_data["model_id"], | |
"base_model": model_data["base_model"], | |
"revision": model_info.sha, | |
"precision": model_data["precision"], | |
"params": model_size, | |
"architectures": model_info.pipeline_tag if hasattr(model_info, 'pipeline_tag') else None, | |
"weight_type": model_data["weight_type"], | |
"status": "PENDING", | |
"submitted_time": datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ"), | |
"model_type": model_data["model_type"], | |
"job_id": -1, | |
"job_start_time": None, | |
"use_chat_template": model_data["use_chat_template"], | |
"sender": user_id | |
} | |
logger.info(LogFormatter.subsection("EVALUATION ENTRY")) | |
for line in LogFormatter.tree(eval_entry): | |
logger.info(line) | |
# Upload to HF dataset | |
try: | |
logger.info(LogFormatter.subsection("UPLOADING TO HUGGINGFACE")) | |
logger.info(LogFormatter.info(f"Uploading to {HF_ORGANIZATION}/requests...")) | |
# Construct the path in the dataset | |
org_or_user = model_data["model_id"].split("/")[0] if "/" in model_data["model_id"] else "" | |
model_path = model_data["model_id"].split("/")[-1] | |
relative_path = f"{org_or_user}/{model_path}_eval_request_False_{model_data['precision']}_{model_data['weight_type']}.json" | |
# Create a temporary file with the request | |
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp_file: | |
json.dump(eval_entry, temp_file, indent=2) | |
temp_file.flush() | |
temp_path = temp_file.name | |
# Upload file directly | |
self.hf_api.upload_file( | |
path_or_fileobj=temp_path, | |
path_in_repo=relative_path, | |
repo_id=f"{HF_ORGANIZATION}/requests", | |
repo_type="dataset", | |
commit_message=f"Add {model_data['model_id']} to eval queue", | |
token=self.token | |
) | |
# Clean up temp file | |
os.unlink(temp_path) | |
logger.info(LogFormatter.success("Upload successful")) | |
except Exception as e: | |
logger.error(LogFormatter.error("Upload failed", e)) | |
raise | |
# Add automatic vote | |
try: | |
logger.info(LogFormatter.subsection("AUTOMATIC VOTE")) | |
logger.info(LogFormatter.info(f"Adding upvote for {model_data['model_id']} by {user_id}")) | |
await self.vote_service.add_vote( | |
model_data["model_id"], | |
user_id, | |
"up" | |
) | |
logger.info(LogFormatter.success("Vote recorded successfully")) | |
except Exception as e: | |
logger.error(LogFormatter.error("Failed to record vote", e)) | |
# Don't raise here as the main submission was successful | |
return { | |
"status": "success", | |
"message": "Model submitted successfully and vote recorded" | |
} | |
async def get_model_status(self, model_id: str) -> Dict[str, Any]: | |
"""Get evaluation status of a model""" | |
logger.info(LogFormatter.info(f"Checking status for model: {model_id}")) | |
eval_path = self.eval_requests_path | |
for user_folder in eval_path.iterdir(): | |
if user_folder.is_dir(): | |
for file in user_folder.glob("*.json"): | |
with open(file, "r") as f: | |
data = json.load(f) | |
if data["model"] == model_id: | |
status = { | |
"status": data["status"], | |
"submitted_time": data["submitted_time"], | |
"job_id": data.get("job_id", -1) | |
} | |
logger.info(LogFormatter.success("Status found")) | |
for line in LogFormatter.tree(status, "Model Status"): | |
logger.info(line) | |
return status | |
logger.warning(LogFormatter.warning(f"No status found for model: {model_id}")) | |
return {"status": "not_found"} |