Alina Lozowski
Migrating to the React project
e7abd9e
raw
history blame
23.3 kB
from datetime import datetime, timezone
from typing import Dict, Any, Optional, List
import json
import os
from pathlib import Path
import logging
import aiohttp
import asyncio
import time
from huggingface_hub import HfApi, CommitOperationAdd
from huggingface_hub.utils import build_hf_headers
import datasets
from datasets import load_dataset, disable_progress_bar
import sys
import contextlib
from concurrent.futures import ThreadPoolExecutor
import tempfile
from app.config import (
QUEUE_REPO,
HF_TOKEN,
EVAL_REQUESTS_PATH
)
from app.config.hf_config import HF_ORGANIZATION
from app.services.hf_service import HuggingFaceService
from app.utils.model_validation import ModelValidator
from app.services.votes import VoteService
from app.core.cache import cache_config
from app.utils.logging import LogFormatter
# Disable datasets progress bars globally
disable_progress_bar()
logger = logging.getLogger(__name__)
# Context manager to temporarily disable stdout and stderr
@contextlib.contextmanager
def suppress_output():
stdout = sys.stdout
stderr = sys.stderr
devnull = open(os.devnull, 'w')
try:
sys.stdout = devnull
sys.stderr = devnull
yield
finally:
sys.stdout = stdout
sys.stderr = stderr
devnull.close()
class ProgressTracker:
def __init__(self, total: int, desc: str = "Progress", update_frequency: int = 10):
self.total = total
self.current = 0
self.desc = desc
self.start_time = time.time()
self.update_frequency = update_frequency # Percentage steps
self.last_update = -1
# Initial log with fancy formatting
logger.info(LogFormatter.section(desc))
logger.info(LogFormatter.info(f"Starting processing of {total:,} items..."))
sys.stdout.flush()
def update(self, n: int = 1):
self.current += n
current_percentage = (self.current * 100) // self.total
# Only update on frequency steps (e.g., 0%, 10%, 20%, etc.)
if current_percentage >= self.last_update + self.update_frequency or current_percentage == 100:
elapsed = time.time() - self.start_time
rate = self.current / elapsed if elapsed > 0 else 0
remaining = (self.total - self.current) / rate if rate > 0 else 0
# Create progress stats
stats = {
"Progress": LogFormatter.progress_bar(self.current, self.total),
"Items": f"{self.current:,}/{self.total:,}",
"Time": f"⏱️ {elapsed:.1f}s elapsed, {remaining:.1f}s remaining",
"Rate": f"🚀 {rate:.1f} items/s"
}
# Log progress using tree format
for line in LogFormatter.tree(stats):
logger.info(line)
sys.stdout.flush()
self.last_update = (current_percentage // self.update_frequency) * self.update_frequency
def close(self):
elapsed = time.time() - self.start_time
rate = self.total / elapsed if elapsed > 0 else 0
# Final summary with fancy formatting
logger.info(LogFormatter.section("COMPLETED"))
stats = {
"Total": f"{self.total:,} items",
"Time": f"{elapsed:.1f}s",
"Rate": f"{rate:.1f} items/s"
}
for line in LogFormatter.stats(stats):
logger.info(line)
logger.info("="*50)
sys.stdout.flush()
class ModelService(HuggingFaceService):
_instance: Optional['ModelService'] = None
_initialized = False
def __new__(cls):
if cls._instance is None:
logger.info(LogFormatter.info("Creating new ModelService instance"))
cls._instance = super(ModelService, cls).__new__(cls)
return cls._instance
def __init__(self):
if not hasattr(self, '_init_done'):
logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION"))
super().__init__()
self.validator = ModelValidator()
self.vote_service = VoteService()
self.eval_requests_path = cache_config.eval_requests_file
logger.info(LogFormatter.info(f"Using eval requests path: {self.eval_requests_path}"))
self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True)
self.hf_api = HfApi(token=HF_TOKEN)
self.cached_models = None
self.last_cache_update = 0
self.cache_ttl = cache_config.cache_ttl.total_seconds()
self._init_done = True
logger.info(LogFormatter.success("Initialization complete"))
async def _download_and_process_file(self, file: str, session: aiohttp.ClientSession, progress: ProgressTracker) -> Optional[Dict]:
"""Download and process a file asynchronously"""
try:
# Build file URL
url = f"https://huggingface.co/datasets/{QUEUE_REPO}/resolve/main/{file}"
headers = build_hf_headers(token=self.token)
# Download file
async with session.get(url, headers=headers) as response:
if response.status != 200:
logger.error(LogFormatter.error(f"Failed to download {file}", f"HTTP {response.status}"))
progress.update()
return None
try:
# First read content as text
text_content = await response.text()
# Then parse JSON
content = json.loads(text_content)
except json.JSONDecodeError as e:
logger.error(LogFormatter.error(f"Failed to decode JSON from {file}", e))
progress.update()
return None
# Get status and determine target status
status = content.get("status", "PENDING").upper()
target_status = None
status_map = {
"PENDING": ["PENDING", "RERUN"],
"EVALUATING": ["RUNNING"],
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"]
}
for target, source_statuses in status_map.items():
if status in source_statuses:
target_status = target
break
if not target_status:
progress.update()
return None
# Calculate wait time
try:
submit_time = datetime.fromisoformat(content["submitted_time"].replace("Z", "+00:00"))
if submit_time.tzinfo is None:
submit_time = submit_time.replace(tzinfo=timezone.utc)
current_time = datetime.now(timezone.utc)
wait_time = current_time - submit_time
model_info = {
"name": content["model"],
"submitter": content.get("sender", "Unknown"),
"revision": content["revision"],
"wait_time": f"{wait_time.total_seconds():.1f}s",
"submission_time": content["submitted_time"],
"status": target_status,
"precision": content.get("precision", "Unknown")
}
progress.update()
return model_info
except (ValueError, TypeError) as e:
logger.error(LogFormatter.error(f"Failed to process {file}", e))
progress.update()
return None
except Exception as e:
logger.error(LogFormatter.error(f"Failed to load {file}", e))
progress.update()
return None
async def _refresh_models_cache(self):
"""Refresh the models cache"""
try:
logger.info(LogFormatter.section("CACHE REFRESH"))
self._log_repo_operation("read", f"{HF_ORGANIZATION}/requests", "Refreshing models cache")
# Initialize models dictionary
models = {
"finished": [],
"evaluating": [],
"pending": []
}
try:
logger.info(LogFormatter.subsection("DATASET LOADING"))
logger.info(LogFormatter.info("Loading dataset files..."))
# List files in repository
with suppress_output():
files = self.hf_api.list_repo_files(
repo_id=QUEUE_REPO,
repo_type="dataset",
token=self.token
)
# Filter JSON files
json_files = [f for f in files if f.endswith('.json')]
total_files = len(json_files)
# Log repository stats
stats = {
"Total_Files": len(files),
"JSON_Files": total_files,
}
for line in LogFormatter.stats(stats, "Repository Statistics"):
logger.info(line)
if not json_files:
raise Exception("No JSON files found in repository")
# Initialize progress tracker
progress = ProgressTracker(total_files, "PROCESSING FILES")
try:
# Create aiohttp session to reuse connections
async with aiohttp.ClientSession() as session:
# Process files in chunks
chunk_size = 50
for i in range(0, len(json_files), chunk_size):
chunk = json_files[i:i + chunk_size]
chunk_tasks = [
self._download_and_process_file(file, session, progress)
for file in chunk
]
results = await asyncio.gather(*chunk_tasks)
# Process results
for result in results:
if result:
status = result.pop("status")
models[status.lower()].append(result)
finally:
progress.close()
# Final summary with fancy formatting
logger.info(LogFormatter.section("CACHE SUMMARY"))
stats = {
"Finished": len(models["finished"]),
"Evaluating": len(models["evaluating"]),
"Pending": len(models["pending"])
}
for line in LogFormatter.stats(stats, "Models by Status"):
logger.info(line)
logger.info("="*50)
except Exception as e:
logger.error(LogFormatter.error("Error processing files", e))
raise
# Update cache
self.cached_models = models
self.last_cache_update = time.time()
logger.info(LogFormatter.success("Cache updated successfully"))
return models
except Exception as e:
logger.error(LogFormatter.error("Cache refresh failed", e))
raise
async def initialize(self):
"""Initialize the model service"""
if self._initialized:
logger.info(LogFormatter.info("Service already initialized, using cached data"))
return
try:
logger.info(LogFormatter.section("MODEL SERVICE INITIALIZATION"))
# Check if cache already exists
cache_path = cache_config.get_cache_path("datasets")
if not cache_path.exists() or not any(cache_path.iterdir()):
logger.info(LogFormatter.info("No existing cache found, initializing datasets cache..."))
cache_config.flush_cache("datasets")
else:
logger.info(LogFormatter.info("Using existing datasets cache"))
# Ensure eval requests directory exists
self.eval_requests_path.parent.mkdir(parents=True, exist_ok=True)
logger.info(LogFormatter.info(f"Eval requests directory: {self.eval_requests_path}"))
# List existing files
if self.eval_requests_path.exists():
files = list(self.eval_requests_path.glob("**/*.json"))
stats = {
"Total_Files": len(files),
"Directory": str(self.eval_requests_path)
}
for line in LogFormatter.stats(stats, "Eval Requests"):
logger.info(line)
# Load initial cache
await self._refresh_models_cache()
self._initialized = True
logger.info(LogFormatter.success("Model service initialization complete"))
except Exception as e:
logger.error(LogFormatter.error("Initialization failed", e))
raise
async def get_models(self) -> Dict[str, List[Dict[str, Any]]]:
"""Get all models with their status"""
if not self._initialized:
logger.info(LogFormatter.info("Service not initialized, initializing now..."))
await self.initialize()
current_time = time.time()
cache_age = current_time - self.last_cache_update
# Check if cache needs refresh
if not self.cached_models:
logger.info(LogFormatter.info("No cached data available, refreshing cache..."))
return await self._refresh_models_cache()
elif cache_age > self.cache_ttl:
logger.info(LogFormatter.info(f"Cache expired ({cache_age:.1f}s old, TTL: {self.cache_ttl}s)"))
return await self._refresh_models_cache()
else:
logger.info(LogFormatter.info(f"Using cached data ({cache_age:.1f}s old)"))
return self.cached_models
async def submit_model(
self,
model_data: Dict[str, Any],
user_id: str
) -> Dict[str, Any]:
logger.info(LogFormatter.section("MODEL SUBMISSION"))
self._log_repo_operation("write", f"{HF_ORGANIZATION}/requests", f"Submitting model {model_data['model_id']} by {user_id}")
stats = {
"Model": model_data["model_id"],
"User": user_id,
"Revision": model_data["revision"],
"Precision": model_data["precision"],
"Type": model_data["model_type"]
}
for line in LogFormatter.tree(stats, "Submission Details"):
logger.info(line)
# Validate required fields
required_fields = [
"model_id", "base_model", "revision", "precision",
"weight_type", "model_type", "use_chat_template"
]
for field in required_fields:
if field not in model_data:
raise ValueError(f"Missing required field: {field}")
# Check if model already exists in the system
try:
logger.info(LogFormatter.subsection("CHECKING EXISTING SUBMISSIONS"))
existing_models = await self.get_models()
# Check in all statuses (pending, evaluating, finished)
for status, models in existing_models.items():
for model in models:
if model["name"] == model_data["model_id"]:
error_msg = f"Model {model_data['model_id']} is already in the system with status: {status}"
logger.error(LogFormatter.error("Submission rejected", error_msg))
raise ValueError(error_msg)
logger.info(LogFormatter.success("No existing submission found"))
except ValueError:
raise
except Exception as e:
logger.error(LogFormatter.error("Failed to check existing submissions", e))
raise
# Get model info and validate it exists on HuggingFace
try:
logger.info(LogFormatter.subsection("MODEL VALIDATION"))
# Get the model info to check if it exists
model_info = self.hf_api.model_info(
model_data["model_id"],
revision=model_data["revision"],
token=self.token
)
if not model_info:
raise Exception(f"Model {model_data['model_id']} not found on HuggingFace Hub")
logger.info(LogFormatter.success("Model exists on HuggingFace Hub"))
except Exception as e:
logger.error(LogFormatter.error("Model validation failed", e))
raise
# Validate model card
valid, error, model_card = await self.validator.check_model_card(
model_data["model_id"]
)
if not valid:
logger.error(LogFormatter.error("Model card validation failed", error))
raise Exception(error)
logger.info(LogFormatter.success("Model card validation passed"))
# Check size limits
model_size, error = await self.validator.get_model_size(
model_info,
model_data["precision"],
model_data["base_model"]
)
if model_size is None:
logger.error(LogFormatter.error("Model size validation failed", error))
raise Exception(error)
logger.info(LogFormatter.success(f"Model size validation passed: {model_size:.1f}GB"))
# Size limits based on precision
if model_data["precision"] in ["float16", "bfloat16"] and model_size > 100:
error_msg = f"Model too large for {model_data['precision']} (limit: 100GB)"
logger.error(LogFormatter.error("Size limit exceeded", error_msg))
raise Exception(error_msg)
# Chat template validation if requested
if model_data["use_chat_template"]:
valid, error = await self.validator.check_chat_template(
model_data["model_id"],
model_data["revision"]
)
if not valid:
logger.error(LogFormatter.error("Chat template validation failed", error))
raise Exception(error)
logger.info(LogFormatter.success("Chat template validation passed"))
# Create eval entry
eval_entry = {
"model": model_data["model_id"],
"base_model": model_data["base_model"],
"revision": model_info.sha,
"precision": model_data["precision"],
"params": model_size,
"architectures": model_info.pipeline_tag if hasattr(model_info, 'pipeline_tag') else None,
"weight_type": model_data["weight_type"],
"status": "PENDING",
"submitted_time": datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ"),
"model_type": model_data["model_type"],
"job_id": -1,
"job_start_time": None,
"use_chat_template": model_data["use_chat_template"],
"sender": user_id
}
logger.info(LogFormatter.subsection("EVALUATION ENTRY"))
for line in LogFormatter.tree(eval_entry):
logger.info(line)
# Upload to HF dataset
try:
logger.info(LogFormatter.subsection("UPLOADING TO HUGGINGFACE"))
logger.info(LogFormatter.info(f"Uploading to {HF_ORGANIZATION}/requests..."))
# Construct the path in the dataset
org_or_user = model_data["model_id"].split("/")[0] if "/" in model_data["model_id"] else ""
model_path = model_data["model_id"].split("/")[-1]
relative_path = f"{org_or_user}/{model_path}_eval_request_False_{model_data['precision']}_{model_data['weight_type']}.json"
# Create a temporary file with the request
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp_file:
json.dump(eval_entry, temp_file, indent=2)
temp_file.flush()
temp_path = temp_file.name
# Upload file directly
self.hf_api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=relative_path,
repo_id=f"{HF_ORGANIZATION}/requests",
repo_type="dataset",
commit_message=f"Add {model_data['model_id']} to eval queue",
token=self.token
)
# Clean up temp file
os.unlink(temp_path)
logger.info(LogFormatter.success("Upload successful"))
except Exception as e:
logger.error(LogFormatter.error("Upload failed", e))
raise
# Add automatic vote
try:
logger.info(LogFormatter.subsection("AUTOMATIC VOTE"))
logger.info(LogFormatter.info(f"Adding upvote for {model_data['model_id']} by {user_id}"))
await self.vote_service.add_vote(
model_data["model_id"],
user_id,
"up"
)
logger.info(LogFormatter.success("Vote recorded successfully"))
except Exception as e:
logger.error(LogFormatter.error("Failed to record vote", e))
# Don't raise here as the main submission was successful
return {
"status": "success",
"message": "Model submitted successfully and vote recorded"
}
async def get_model_status(self, model_id: str) -> Dict[str, Any]:
"""Get evaluation status of a model"""
logger.info(LogFormatter.info(f"Checking status for model: {model_id}"))
eval_path = self.eval_requests_path
for user_folder in eval_path.iterdir():
if user_folder.is_dir():
for file in user_folder.glob("*.json"):
with open(file, "r") as f:
data = json.load(f)
if data["model"] == model_id:
status = {
"status": data["status"],
"submitted_time": data["submitted_time"],
"job_id": data.get("job_id", -1)
}
logger.info(LogFormatter.success("Status found"))
for line in LogFormatter.tree(status, "Model Status"):
logger.info(line)
return status
logger.warning(LogFormatter.warning(f"No status found for model: {model_id}"))
return {"status": "not_found"}