tfrere's picture
add uid to context
f1e551a
raw
history blame
9.04 kB
from app.core.cache import cache_config
from datetime import datetime
from typing import List, Dict, Any
import datasets
from fastapi import HTTPException
import logging
from app.config.base import HF_ORGANIZATION
from app.utils.logging import LogFormatter
logger = logging.getLogger(__name__)
class LeaderboardService:
def __init__(self):
pass
async def fetch_raw_data(self) -> List[Dict[str, Any]]:
"""Fetch raw leaderboard data from HuggingFace dataset"""
try:
logger.info(LogFormatter.section("FETCHING LEADERBOARD DATA"))
logger.info(LogFormatter.info(f"Loading dataset from {HF_ORGANIZATION}/contents"))
dataset = datasets.load_dataset(
f"{HF_ORGANIZATION}/contents",
cache_dir=cache_config.get_cache_path("datasets")
)["train"]
df = dataset.to_pandas()
data = df.to_dict('records')
stats = {
"Total_Entries": len(data),
"Dataset_Size": f"{df.memory_usage(deep=True).sum() / 1024 / 1024:.1f}MB"
}
for line in LogFormatter.stats(stats, "Dataset Statistics"):
logger.info(line)
return data
except Exception as e:
logger.error(LogFormatter.error("Failed to fetch leaderboard data", e))
raise HTTPException(status_code=500, detail=str(e))
async def get_formatted_data(self) -> List[Dict[str, Any]]:
"""Get formatted leaderboard data"""
try:
logger.info(LogFormatter.section("FORMATTING LEADERBOARD DATA"))
raw_data = await self.fetch_raw_data()
formatted_data = []
type_counts = {}
error_count = 0
# Initialize progress tracking
total_items = len(raw_data)
logger.info(LogFormatter.info(f"Processing {total_items:,} entries..."))
for i, item in enumerate(raw_data, 1):
try:
formatted_item = await self.transform_data(item)
formatted_data.append(formatted_item)
# Count model types
model_type = formatted_item["model"]["type"]
type_counts[model_type] = type_counts.get(model_type, 0) + 1
except Exception as e:
error_count += 1
logger.error(LogFormatter.error(f"Failed to format entry {i}/{total_items}", e))
continue
# Log progress every 10%
if i % max(1, total_items // 10) == 0:
progress = (i / total_items) * 100
logger.info(LogFormatter.info(f"Progress: {LogFormatter.progress_bar(i, total_items)}"))
# Log final statistics
stats = {
"Total_Processed": total_items,
"Successful": len(formatted_data),
"Failed": error_count
}
logger.info(LogFormatter.section("PROCESSING SUMMARY"))
for line in LogFormatter.stats(stats, "Processing Statistics"):
logger.info(line)
# Log model type distribution
type_stats = {f"Type_{k}": v for k, v in type_counts.items()}
logger.info(LogFormatter.subsection("MODEL TYPE DISTRIBUTION"))
for line in LogFormatter.stats(type_stats):
logger.info(line)
return formatted_data
except Exception as e:
logger.error(LogFormatter.error("Failed to format leaderboard data", e))
raise HTTPException(status_code=500, detail=str(e))
async def transform_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Transform raw data into the format expected by the frontend"""
try:
# Extract model name for logging
model_name = data.get("fullname", "Unknown")
logger.debug(LogFormatter.info(f"Transforming data for model: {model_name}"))
# Create unique ID combining model name, precision, sha and chat template status
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
evaluations = {
"ifeval": {
"name": "IFEval",
"value": data.get("IFEval Raw", 0),
"normalized_score": data.get("IFEval", 0)
},
"bbh": {
"name": "BBH",
"value": data.get("BBH Raw", 0),
"normalized_score": data.get("BBH", 0)
},
"math": {
"name": "MATH Level 5",
"value": data.get("MATH Lvl 5 Raw", 0),
"normalized_score": data.get("MATH Lvl 5", 0)
},
"gpqa": {
"name": "GPQA",
"value": data.get("GPQA Raw", 0),
"normalized_score": data.get("GPQA", 0)
},
"musr": {
"name": "MUSR",
"value": data.get("MUSR Raw", 0),
"normalized_score": data.get("MUSR", 0)
},
"mmlu_pro": {
"name": "MMLU-PRO",
"value": data.get("MMLU-PRO Raw", 0),
"normalized_score": data.get("MMLU-PRO", 0)
}
}
features = {
"is_not_available_on_hub": data.get("Available on the hub", False),
"is_merged": data.get("Merged", False),
"is_moe": data.get("MoE", False),
"is_flagged": data.get("Flagged", False),
"is_highlighted_by_maintainer": data.get("Official Providers", False)
}
metadata = {
"upload_date": data.get("Upload To Hub Date"),
"submission_date": data.get("Submission Date"),
"generation": data.get("Generation"),
"base_model": data.get("Base Model"),
"hub_license": data.get("Hub License"),
"hub_hearts": data.get("Hub ❤️"),
"params_billions": data.get("#Params (B)"),
"co2_cost": data.get("CO₂ cost (kg)", 0)
}
# Clean model type by removing emojis if present
original_type = data.get("Type", "")
model_type = original_type.lower().strip()
# Remove emojis and parentheses
if "(" in model_type:
model_type = model_type.split("(")[0].strip()
model_type = ''.join(c for c in model_type if not c in '🔶🟢🟩💬🤝🌸 ')
# Map old model types to new ones
model_type_mapping = {
"fine-tuned": "fined-tuned-on-domain-specific-dataset",
"fine tuned": "fined-tuned-on-domain-specific-dataset",
"finetuned": "fined-tuned-on-domain-specific-dataset",
"fine_tuned": "fined-tuned-on-domain-specific-dataset",
"ft": "fined-tuned-on-domain-specific-dataset",
"finetuning": "fined-tuned-on-domain-specific-dataset",
"fine tuning": "fined-tuned-on-domain-specific-dataset",
"fine-tuning": "fined-tuned-on-domain-specific-dataset"
}
mapped_type = model_type_mapping.get(model_type.lower().strip(), model_type)
if mapped_type != model_type:
logger.debug(LogFormatter.info(f"Model type mapped: {original_type} -> {mapped_type}"))
transformed_data = {
"id": unique_id,
"model": {
"name": data.get("fullname"),
"sha": data.get("Model sha"),
"precision": data.get("Precision"),
"type": mapped_type,
"weight_type": data.get("Weight type"),
"architecture": data.get("Architecture"),
"average_score": data.get("Average ⬆️"),
"has_chat_template": data.get("Chat Template", False)
},
"evaluations": evaluations,
"features": features,
"metadata": metadata
}
logger.debug(LogFormatter.success(f"Successfully transformed data for {model_name}"))
return transformed_data
except Exception as e:
logger.error(LogFormatter.error(f"Failed to transform data for {data.get('fullname', 'Unknown')}", e))
raise