Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
•
014d36a
1
Parent(s):
1de2d20
updated tooltips
Browse files
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js
CHANGED
@@ -44,13 +44,13 @@ const FILTERS = {
|
|
44 |
hide: true,
|
45 |
},
|
46 |
{
|
47 |
-
value: "
|
48 |
-
label: "
|
49 |
hide: true,
|
50 |
},
|
51 |
{
|
52 |
-
value: "
|
53 |
-
label: "
|
54 |
hide: true,
|
55 |
},
|
56 |
{
|
|
|
44 |
hide: true,
|
45 |
},
|
46 |
{
|
47 |
+
value: "is_merged",
|
48 |
+
label: "Merged model",
|
49 |
hide: true,
|
50 |
},
|
51 |
{
|
52 |
+
value: "is_flagged",
|
53 |
+
label: "Potentially contaminated model",
|
54 |
hide: true,
|
55 |
},
|
56 |
{
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/quickFilters.js
CHANGED
@@ -11,8 +11,8 @@ export const QUICK_FILTER_PRESETS = [
|
|
11 |
},
|
12 |
{
|
13 |
id: 'small_models',
|
14 |
-
label: 'For
|
15 |
-
shortDescription: 'Smol-LMs:
|
16 |
description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
|
17 |
filters: {
|
18 |
paramsRange: [3, 7],
|
@@ -21,7 +21,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
21 |
},
|
22 |
{
|
23 |
id: 'medium_models',
|
24 |
-
label: '
|
25 |
shortDescription: 'Medium-sized models: 7B-65B parameters',
|
26 |
description: 'Overall balance between performance and required resources.',
|
27 |
filters: {
|
@@ -33,7 +33,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
33 |
id: 'large_models',
|
34 |
label: 'For the GPU-rich',
|
35 |
shortDescription: 'Large models: 65B+ parameters',
|
36 |
-
description: 'Large-scale models offering (in theory) the best performance but requiring significant resources.
|
37 |
filters: {
|
38 |
paramsRange: [65, 140],
|
39 |
selectedBooleanFilters: []
|
@@ -43,7 +43,7 @@ export const QUICK_FILTER_PRESETS = [
|
|
43 |
id: 'official_providers',
|
44 |
label: 'Only Official Providers',
|
45 |
shortDescription: 'Officially provided models',
|
46 |
-
description: 'Models that are officially provided and maintained by
|
47 |
filters: {
|
48 |
selectedBooleanFilters: ['is_highlighted_by_maintainer']
|
49 |
}
|
|
|
11 |
},
|
12 |
{
|
13 |
id: 'small_models',
|
14 |
+
label: 'For Consumers',
|
15 |
+
shortDescription: 'Smol-LMs: 3-7B parameters',
|
16 |
description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
|
17 |
filters: {
|
18 |
paramsRange: [3, 7],
|
|
|
21 |
},
|
22 |
{
|
23 |
id: 'medium_models',
|
24 |
+
label: 'Mid-range',
|
25 |
shortDescription: 'Medium-sized models: 7B-65B parameters',
|
26 |
description: 'Overall balance between performance and required resources.',
|
27 |
filters: {
|
|
|
33 |
id: 'large_models',
|
34 |
label: 'For the GPU-rich',
|
35 |
shortDescription: 'Large models: 65B+ parameters',
|
36 |
+
description: 'Large-scale models offering (in theory) the best performance but requiring significant resources. Require adapted infrastructure.',
|
37 |
filters: {
|
38 |
paramsRange: [65, 140],
|
39 |
selectedBooleanFilters: []
|
|
|
43 |
id: 'official_providers',
|
44 |
label: 'Only Official Providers',
|
45 |
shortDescription: 'Officially provided models',
|
46 |
+
description: 'Models that are officially provided and maintained by official creators or organizations.',
|
47 |
filters: {
|
48 |
selectedBooleanFilters: ['is_highlighted_by_maintainer']
|
49 |
}
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js
CHANGED
@@ -48,15 +48,15 @@ export const COLUMN_TOOLTIPS = {
|
|
48 |
subItems: ["Instruction following", "Formatting", "Generation"],
|
49 |
},
|
50 |
{
|
51 |
-
label: "Scoring",
|
52 |
-
description: "
|
53 |
},
|
54 |
]),
|
55 |
|
56 |
BBH: createTooltipContent("Big Bench Hard (BBH):", [
|
57 |
{
|
58 |
label: "Overview",
|
59 |
-
description: "Collection of challenging for LLM tasks across domains",
|
60 |
subItems: [
|
61 |
"Language understanding",
|
62 |
"Mathematical reasoning",
|
@@ -64,9 +64,9 @@ export const COLUMN_TOOLTIPS = {
|
|
64 |
],
|
65 |
},
|
66 |
{
|
67 |
-
label: "Scoring",
|
68 |
description:
|
69 |
-
"
|
70 |
},
|
71 |
]),
|
72 |
|
@@ -79,9 +79,9 @@ export const COLUMN_TOOLTIPS = {
|
|
79 |
subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
|
80 |
},
|
81 |
{
|
82 |
-
label: "
|
83 |
description:
|
84 |
-
"
|
85 |
},
|
86 |
]
|
87 |
),
|
@@ -91,15 +91,15 @@ export const COLUMN_TOOLTIPS = {
|
|
91 |
label: "Focus",
|
92 |
description: "PhD-level knowledge multiple choice questions in science",
|
93 |
subItems: [
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"
|
97 |
],
|
98 |
},
|
99 |
{
|
100 |
-
label: "
|
101 |
description:
|
102 |
-
"
|
103 |
},
|
104 |
]),
|
105 |
|
@@ -114,9 +114,9 @@ export const COLUMN_TOOLTIPS = {
|
|
114 |
],
|
115 |
},
|
116 |
{
|
117 |
-
label: "Scoring",
|
118 |
description:
|
119 |
-
"
|
120 |
},
|
121 |
]),
|
122 |
|
@@ -125,7 +125,7 @@ export const COLUMN_TOOLTIPS = {
|
|
125 |
[
|
126 |
{
|
127 |
label: "Coverage",
|
128 |
-
description: "Expertly reviewed multichoice questions across domains",
|
129 |
subItems: [
|
130 |
"Medicine and healthcare",
|
131 |
"Law and ethics",
|
@@ -134,9 +134,9 @@ export const COLUMN_TOOLTIPS = {
|
|
134 |
],
|
135 |
},
|
136 |
{
|
137 |
-
label: "
|
138 |
description:
|
139 |
-
"
|
140 |
},
|
141 |
]
|
142 |
),
|
@@ -146,19 +146,21 @@ export const COLUMN_TOOLTIPS = {
|
|
146 |
label: "Definition",
|
147 |
description: "The fundamental structure and design of the model",
|
148 |
subItems: [
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
|
|
|
|
153 |
],
|
154 |
},
|
155 |
{
|
156 |
label: "Impact",
|
157 |
description: "How architecture affects model capabilities",
|
158 |
subItems: [
|
159 |
-
"
|
160 |
-
"
|
161 |
-
"
|
162 |
],
|
163 |
},
|
164 |
]),
|
@@ -169,10 +171,10 @@ export const COLUMN_TOOLTIPS = {
|
|
169 |
description:
|
170 |
"Data format used to store model weights and perform computations",
|
171 |
subItems: [
|
172 |
-
"
|
173 |
-
"
|
174 |
-
"
|
175 |
-
"GPTQ/AWQ:
|
176 |
],
|
177 |
},
|
178 |
{
|
@@ -181,40 +183,28 @@ export const COLUMN_TOOLTIPS = {
|
|
181 |
subItems: [
|
182 |
"Higher precision = better accuracy but more memory usage",
|
183 |
"Lower precision = faster inference and smaller size",
|
184 |
-
"Different hardware compatibility requirements",
|
185 |
"Trade-off between model quality and resource usage",
|
186 |
],
|
187 |
},
|
188 |
-
{
|
189 |
-
label: "Use Cases",
|
190 |
-
description: "Choosing the right precision format",
|
191 |
-
subItems: [
|
192 |
-
"Production deployment optimization",
|
193 |
-
"Resource-constrained environments",
|
194 |
-
"High-performance computing scenarios",
|
195 |
-
],
|
196 |
-
},
|
197 |
]),
|
198 |
|
199 |
FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
200 |
{
|
201 |
-
label: "
|
202 |
-
description: "Special indicators and capabilities of the model",
|
203 |
subItems: [
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
],
|
209 |
},
|
210 |
{
|
211 |
-
label: "
|
212 |
-
description: "
|
213 |
subItems: [
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"
|
217 |
-
"Flash Attention: Optimized attention implementation",
|
218 |
],
|
219 |
},
|
220 |
]),
|
@@ -260,7 +250,6 @@ export const COLUMN_TOOLTIPS = {
|
|
260 |
subItems: [
|
261 |
"Large models can have significant carbon footprints",
|
262 |
"Helps make informed choices about model selection",
|
263 |
-
"Promotes awareness of AI's environmental impact",
|
264 |
],
|
265 |
},
|
266 |
{
|
@@ -332,12 +321,12 @@ export const UI_TOOLTIPS = {
|
|
332 |
"Efficient models for edge devices, optimized for blazing fast inference.",
|
333 |
},
|
334 |
{
|
335 |
-
label: "Smol Models (
|
336 |
description:
|
337 |
-
"Efficient models for consumer hardware
|
338 |
},
|
339 |
{
|
340 |
-
label: "
|
341 |
description:
|
342 |
"A bit of everything here, with overall balanced performance and resource usage around 30B.",
|
343 |
},
|
|
|
48 |
subItems: ["Instruction following", "Formatting", "Generation"],
|
49 |
},
|
50 |
{
|
51 |
+
label: "Scoring: Accuracy",
|
52 |
+
description: "Was the format asked for strictly respected.",
|
53 |
},
|
54 |
]),
|
55 |
|
56 |
BBH: createTooltipContent("Big Bench Hard (BBH):", [
|
57 |
{
|
58 |
label: "Overview",
|
59 |
+
description: "Collection of challenging for LLM tasks across domains, for example",
|
60 |
subItems: [
|
61 |
"Language understanding",
|
62 |
"Mathematical reasoning",
|
|
|
64 |
],
|
65 |
},
|
66 |
{
|
67 |
+
label: "Scoring: Accuracy",
|
68 |
description:
|
69 |
+
"Was the correct choice selected among the options.",
|
70 |
},
|
71 |
]),
|
72 |
|
|
|
79 |
subItems: ["Complex algebra", "Geometry problems", "Advanced calculus"],
|
80 |
},
|
81 |
{
|
82 |
+
label: "Scoring: Exact match",
|
83 |
description:
|
84 |
+
"Was the solution generated correct and in the expected format",
|
85 |
},
|
86 |
]
|
87 |
),
|
|
|
91 |
label: "Focus",
|
92 |
description: "PhD-level knowledge multiple choice questions in science",
|
93 |
subItems: [
|
94 |
+
"Chemistry",
|
95 |
+
"Biology",
|
96 |
+
"Physics",
|
97 |
],
|
98 |
},
|
99 |
{
|
100 |
+
label: "Scoring: Accuracy",
|
101 |
description:
|
102 |
+
"Was the correct choice selected among the options.",
|
103 |
},
|
104 |
]),
|
105 |
|
|
|
114 |
],
|
115 |
},
|
116 |
{
|
117 |
+
label: "Scoring: Accuracy",
|
118 |
description:
|
119 |
+
"Was the correct choice selected among the options.",
|
120 |
},
|
121 |
]),
|
122 |
|
|
|
125 |
[
|
126 |
{
|
127 |
label: "Coverage",
|
128 |
+
description: "Expertly reviewed multichoice questions across domains, for example:",
|
129 |
subItems: [
|
130 |
"Medicine and healthcare",
|
131 |
"Law and ethics",
|
|
|
134 |
],
|
135 |
},
|
136 |
{
|
137 |
+
label: "Scoring: Accuracy",
|
138 |
description:
|
139 |
+
"Was the correct choice selected among the options.",
|
140 |
},
|
141 |
]
|
142 |
),
|
|
|
146 |
label: "Definition",
|
147 |
description: "The fundamental structure and design of the model",
|
148 |
subItems: [
|
149 |
+
"Pretrained: Foundational models, initially trained on large datasets without task-specific tuning, serving as a versatile base for further development.",
|
150 |
+
"Continuously Pretrained: Base models trained with a data mix evolving as the model is trained, with the addition of specialized data during the last training steps.",
|
151 |
+
"Fine-tuned: Base models, fine-tuned on specialised domain data (legal, medical, ...), and optimized for particular tasks.",
|
152 |
+
"Chat: Models fine-tuned with IFT, RLHF, DPO, and other techniques, to handle conversational contexts effectively.",
|
153 |
+
"Merged: Combining multiple models through weights averaging or similar methods.",
|
154 |
+
"Multimodal: Models which can handle several modalities (text & image/audio/video/...). We only evaluate the text capabilities.",
|
155 |
],
|
156 |
},
|
157 |
{
|
158 |
label: "Impact",
|
159 |
description: "How architecture affects model capabilities",
|
160 |
subItems: [
|
161 |
+
"Base models are expected to perform less well on instruction following evaluations, like IFEval.",
|
162 |
+
"Fine-tuned and chat models can be more verbose and more chatty than base models.",
|
163 |
+
"Merged models tend to exhibit good performance on benchmarks, which do not translate to real-world situations.",
|
164 |
],
|
165 |
},
|
166 |
]),
|
|
|
171 |
description:
|
172 |
"Data format used to store model weights and perform computations",
|
173 |
subItems: [
|
174 |
+
"bfloat16: Half precision (Brain Float format), good for stability",
|
175 |
+
"float16: Half precision",
|
176 |
+
"8bit/4bit: Quantized formats, for efficiency",
|
177 |
+
"GPTQ/AWQ: Quantized methods",
|
178 |
],
|
179 |
},
|
180 |
{
|
|
|
183 |
subItems: [
|
184 |
"Higher precision = better accuracy but more memory usage",
|
185 |
"Lower precision = faster inference and smaller size",
|
|
|
186 |
"Trade-off between model quality and resource usage",
|
187 |
],
|
188 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
]),
|
190 |
|
191 |
FLAGS: createTooltipContent("Model Flags and Special Features:", [
|
192 |
{
|
193 |
+
label: "Filters",
|
|
|
194 |
subItems: [
|
195 |
+
"Mixture of Expert: Uses a MoE architecture",
|
196 |
+
"Merged models: Created by averaging other models",
|
197 |
+
"Contaminated: Flagged by users from the community for (possibly accidental) cheating",
|
198 |
+
"Unavailable: No longer on the hub (private, deleted) or missing a license tag",
|
199 |
],
|
200 |
},
|
201 |
{
|
202 |
+
label: "Purpose",
|
203 |
+
description: "Why do people want to hide these models?",
|
204 |
subItems: [
|
205 |
+
"Mixture of Experts: These models can be too parameter heavy",
|
206 |
+
"Merged models: Performance on benchmarks tend to be inflated compared to real life usage",
|
207 |
+
"Contaminated: Performance on benchmarks is inflated and not reflecting real life usage",
|
|
|
208 |
],
|
209 |
},
|
210 |
]),
|
|
|
250 |
subItems: [
|
251 |
"Large models can have significant carbon footprints",
|
252 |
"Helps make informed choices about model selection",
|
|
|
253 |
],
|
254 |
},
|
255 |
{
|
|
|
321 |
"Efficient models for edge devices, optimized for blazing fast inference.",
|
322 |
},
|
323 |
{
|
324 |
+
label: "Smol Models (3B-7B)",
|
325 |
description:
|
326 |
+
"Efficient models for consumer hardware, optimized for fast inference.",
|
327 |
},
|
328 |
{
|
329 |
+
label: "Mid-range models (7B-65B)",
|
330 |
description:
|
331 |
"A bit of everything here, with overall balanced performance and resource usage around 30B.",
|
332 |
},
|