Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
chriscanal
commited on
Commit
•
319b0b7
1
Parent(s):
2ef734a
Creating functions for plotting results over time
Browse filesI've added two graphs and human baselines for each metric. I think this should help us track progress over time more easily.
![Open LLM Leaderboard with Graphs.png](https://cdn-uploads.huggingface.co/production/uploads/62e2c159555a866437a920ca/BAPHzl99NtWdM7hRYa1dT.png)
src/display_models/plot_results.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import altair as alt
|
3 |
+
import pickle
|
4 |
+
from datetime import datetime, timezone
|
5 |
+
from typing import List, Dict, Tuple, Any, Union
|
6 |
+
|
7 |
+
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
8 |
+
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
9 |
+
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
|
10 |
+
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
|
11 |
+
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
|
12 |
+
# Define the human baselines
|
13 |
+
HUMAN_BASELINES = {
|
14 |
+
"Average ⬆️": 0.897 * 100,
|
15 |
+
"ARC": 0.80 * 100,
|
16 |
+
"HellaSwag": 0.95 * 100,
|
17 |
+
"MMLU": 0.898 * 100,
|
18 |
+
"TruthfulQA": 0.94 * 100,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def to_datetime(model_info: Tuple[str, Any]) -> datetime:
|
23 |
+
"""
|
24 |
+
Converts the lastModified attribute of the object to datetime.
|
25 |
+
|
26 |
+
:param model_info: A tuple containing the name and object.
|
27 |
+
The object must have a lastModified attribute
|
28 |
+
with a string representing the date and time.
|
29 |
+
:return: A datetime object converted from the lastModified attribute of the input object.
|
30 |
+
"""
|
31 |
+
name, obj = model_info
|
32 |
+
return datetime.strptime(obj.lastModified, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc)
|
33 |
+
|
34 |
+
|
35 |
+
def join_model_info_with_results(results_df: pd.DataFrame) -> pd.DataFrame:
|
36 |
+
"""
|
37 |
+
Integrates model information with the results DataFrame by matching 'Model sha'.
|
38 |
+
|
39 |
+
:param results_df: A DataFrame containing results information including 'Model sha' column.
|
40 |
+
:return: A DataFrame with updated 'Results Date' columns, which are synchronized with model information.
|
41 |
+
"""
|
42 |
+
# load cache from disk
|
43 |
+
try:
|
44 |
+
with open("model_info_cache.pkl", "rb") as f:
|
45 |
+
model_info_cache = pickle.load(f)
|
46 |
+
except (EOFError, FileNotFoundError):
|
47 |
+
model_info_cache = {}
|
48 |
+
|
49 |
+
# Sort date strings using datetime objects as keys
|
50 |
+
sorted_dates = sorted(list(model_info_cache.items()), key=to_datetime, reverse=True)
|
51 |
+
results_df["Results Date"] = datetime.now().replace(tzinfo=timezone.utc)
|
52 |
+
|
53 |
+
# Define the date format string
|
54 |
+
date_format = "%Y-%m-%dT%H:%M:%S.%fZ"
|
55 |
+
|
56 |
+
# Iterate over sorted_dates and update the dataframe
|
57 |
+
for name, obj in sorted_dates:
|
58 |
+
# Convert the lastModified string to a datetime object
|
59 |
+
last_modified_datetime = datetime.strptime(obj.lastModified, date_format).replace(tzinfo=timezone.utc)
|
60 |
+
|
61 |
+
# Update the "Results Date" column where "Model sha" equals obj.sha
|
62 |
+
results_df.loc[results_df["Model sha"] == obj.sha, "Results Date"] = last_modified_datetime
|
63 |
+
return results_df
|
64 |
+
|
65 |
+
|
66 |
+
def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
67 |
+
"""
|
68 |
+
Generates a DataFrame containing the maximum scores until each result date.
|
69 |
+
|
70 |
+
:param results_df: A DataFrame containing result information including metric scores and result dates.
|
71 |
+
:return: A new DataFrame containing the maximum scores until each result date for every metric.
|
72 |
+
"""
|
73 |
+
# Step 1: Ensure 'Results Date' is in datetime format and sort the DataFrame by it
|
74 |
+
results_df["Results Date"] = pd.to_datetime(results_df["Results Date"])
|
75 |
+
results_df.sort_values(by="Results Date", inplace=True)
|
76 |
+
|
77 |
+
# Step 2: Initialize the scores dictionary
|
78 |
+
scores = {
|
79 |
+
"Average ⬆️": [],
|
80 |
+
"ARC": [],
|
81 |
+
"HellaSwag": [],
|
82 |
+
"MMLU": [],
|
83 |
+
"TruthfulQA": [],
|
84 |
+
"Result Date": [],
|
85 |
+
}
|
86 |
+
|
87 |
+
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
88 |
+
for i, row in results_df.iterrows():
|
89 |
+
date = row["Results Date"]
|
90 |
+
for column in scores.keys():
|
91 |
+
if column == "Result Date":
|
92 |
+
if not scores[column] or scores[column][-1] <= date:
|
93 |
+
scores[column].append(date)
|
94 |
+
continue
|
95 |
+
current_max = scores[column][-1] if scores[column] else float("-inf")
|
96 |
+
scores[column].append(max(current_max, row[column]))
|
97 |
+
|
98 |
+
# Step 4: Convert the dictionary to a DataFrame
|
99 |
+
return pd.DataFrame(scores)
|
100 |
+
|
101 |
+
|
102 |
+
def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
103 |
+
"""
|
104 |
+
Transforms the scores DataFrame into a new format suitable for plotting.
|
105 |
+
|
106 |
+
:param scores_df: A DataFrame containing metric scores and result dates.
|
107 |
+
:return: A new DataFrame reshaped for plotting purposes.
|
108 |
+
"""
|
109 |
+
# Sample columns
|
110 |
+
cols = ["Average ⬆️", "ARC", "HellaSwag", "MMLU", "TruthfulQA"]
|
111 |
+
|
112 |
+
# Initialize the list to store DataFrames
|
113 |
+
dfs = []
|
114 |
+
|
115 |
+
# Iterate over the cols and create a new DataFrame for each column
|
116 |
+
for col in cols:
|
117 |
+
d = scores_df[[col, "Result Date"]].copy().reset_index(drop=True)
|
118 |
+
d["Metric Name"] = col
|
119 |
+
d.rename(columns={col: "Metric Value"}, inplace=True)
|
120 |
+
dfs.append(d)
|
121 |
+
|
122 |
+
# Concatenate all the created DataFrames
|
123 |
+
concat_df = pd.concat(dfs, ignore_index=True)
|
124 |
+
|
125 |
+
# Sort values by 'Result Date'
|
126 |
+
concat_df.sort_values(by="Result Date", inplace=True)
|
127 |
+
concat_df.reset_index(drop=True, inplace=True)
|
128 |
+
|
129 |
+
# Drop duplicates based on 'Metric Name' and 'Metric Value' and keep the first (earliest) occurrence
|
130 |
+
concat_df.drop_duplicates(subset=["Metric Name", "Metric Value"], keep="first", inplace=True)
|
131 |
+
|
132 |
+
concat_df.reset_index(drop=True, inplace=True)
|
133 |
+
return concat_df
|
134 |
+
|
135 |
+
|
136 |
+
def create_metric_plot_obj(df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float]) -> alt.LayerChart:
|
137 |
+
"""
|
138 |
+
Creates a visualization of metrics over time compared to human baselines.
|
139 |
+
|
140 |
+
:param df: A DataFrame containing 'Metric Name', 'Metric Value', and 'Result Date' columns.
|
141 |
+
:param metrics: A list of metric names to be included in the plot.
|
142 |
+
:param human_baselines: A dictionary mapping metric names to their corresponding human baseline values.
|
143 |
+
:return: An Altair LayerChart object visualizing the metrics over time.
|
144 |
+
"""
|
145 |
+
# Filter the DataFrame based on the metrics parameter
|
146 |
+
df = df[df["Metric Name"].isin(metrics)]
|
147 |
+
|
148 |
+
# Filter the human_baselines dictionary to include only the specified metrics
|
149 |
+
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
150 |
+
|
151 |
+
# Create a DataFrame from filtered human baselines
|
152 |
+
human_baselines_df = pd.DataFrame(list(filtered_human_baselines.items()), columns=["Metric Name", "Metric Value"])
|
153 |
+
|
154 |
+
# Create the lines chart for each metric over time.
|
155 |
+
base = alt.Chart(df).encode(x="Result Date:T")
|
156 |
+
lines = base.mark_line().encode(
|
157 |
+
alt.Y("Metric Value:Q", scale=alt.Scale(domain=[0, 100])),
|
158 |
+
color="Metric Name:N",
|
159 |
+
)
|
160 |
+
|
161 |
+
# Create the rules (horizontal lines) chart for the human baselines.
|
162 |
+
yrules = (
|
163 |
+
alt.Chart(human_baselines_df)
|
164 |
+
.mark_rule(strokeDash=[12, 6], size=2)
|
165 |
+
.encode(y="Metric Value:Q", color="Metric Name:N")
|
166 |
+
)
|
167 |
+
|
168 |
+
# Combine lines with yrules and return the chart.
|
169 |
+
return lines + yrules
|