Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
chriscanal
commited on
Commit
·
65fc294
1
Parent(s):
1d6adda
Changed to Plotly for interactive graphs!
Browse filessuggestion by Nathan Habib implemented. So much better than the dumb printed graphs!
src/display_models/plot_results.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import pandas as pd
|
2 |
-
import
|
|
|
3 |
import pickle
|
4 |
from datetime import datetime, timezone
|
5 |
-
from typing import List, Dict, Tuple, Any
|
6 |
|
7 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
8 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
@@ -82,6 +83,7 @@ def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
|
82 |
"MMLU": [],
|
83 |
"TruthfulQA": [],
|
84 |
"Result Date": [],
|
|
|
85 |
}
|
86 |
|
87 |
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
@@ -92,6 +94,9 @@ def create_scores_df(results_df: pd.DataFrame) -> pd.DataFrame:
|
|
92 |
if not scores[column] or scores[column][-1] <= date:
|
93 |
scores[column].append(date)
|
94 |
continue
|
|
|
|
|
|
|
95 |
current_max = scores[column][-1] if scores[column] else float("-inf")
|
96 |
scores[column].append(max(current_max, row[column]))
|
97 |
|
@@ -114,7 +119,7 @@ def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
|
114 |
|
115 |
# Iterate over the cols and create a new DataFrame for each column
|
116 |
for col in cols:
|
117 |
-
d = scores_df[[col, "Result Date"]].copy().reset_index(drop=True)
|
118 |
d["Metric Name"] = col
|
119 |
d.rename(columns={col: "Metric Value"}, inplace=True)
|
120 |
dfs.append(d)
|
@@ -133,37 +138,77 @@ def create_plot_df(scores_df: pd.DataFrame) -> pd.DataFrame:
|
|
133 |
return concat_df
|
134 |
|
135 |
|
136 |
-
def create_metric_plot_obj(
|
|
|
|
|
137 |
"""
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
:param
|
142 |
-
:param
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
"""
|
145 |
-
|
|
|
146 |
df = df[df["Metric Name"].isin(metrics)]
|
147 |
|
148 |
-
# Filter the
|
149 |
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
150 |
|
151 |
-
# Create a
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
159 |
)
|
160 |
|
161 |
-
#
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
)
|
167 |
|
168 |
-
#
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
from plotly.graph_objs import Figure
|
4 |
import pickle
|
5 |
from datetime import datetime, timezone
|
6 |
+
from typing import List, Dict, Tuple, Any
|
7 |
|
8 |
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
|
9 |
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
|
|
|
83 |
"MMLU": [],
|
84 |
"TruthfulQA": [],
|
85 |
"Result Date": [],
|
86 |
+
"Model Name": [],
|
87 |
}
|
88 |
|
89 |
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
|
|
94 |
if not scores[column] or scores[column][-1] <= date:
|
95 |
scores[column].append(date)
|
96 |
continue
|
97 |
+
if column == "Model Name":
|
98 |
+
scores[column].append(row["model_name_for_query"])
|
99 |
+
continue
|
100 |
current_max = scores[column][-1] if scores[column] else float("-inf")
|
101 |
scores[column].append(max(current_max, row[column]))
|
102 |
|
|
|
119 |
|
120 |
# Iterate over the cols and create a new DataFrame for each column
|
121 |
for col in cols:
|
122 |
+
d = scores_df[[col, "Model Name", "Result Date"]].copy().reset_index(drop=True)
|
123 |
d["Metric Name"] = col
|
124 |
d.rename(columns={col: "Metric Value"}, inplace=True)
|
125 |
dfs.append(d)
|
|
|
138 |
return concat_df
|
139 |
|
140 |
|
141 |
+
def create_metric_plot_obj(
|
142 |
+
df: pd.DataFrame, metrics: List[str], human_baselines: Dict[str, float], title: str
|
143 |
+
) -> Figure:
|
144 |
"""
|
145 |
+
Create a Plotly figure object with lines representing different metrics
|
146 |
+
and horizontal dotted lines representing human baselines.
|
147 |
+
|
148 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
149 |
+
:param metrics: A list of strings representing the names of the metrics
|
150 |
+
to be included in the plot.
|
151 |
+
:param human_baselines: A dictionary where keys are metric names
|
152 |
+
and values are human baseline values for the metrics.
|
153 |
+
:param title: A string representing the title of the plot.
|
154 |
+
:return: A Plotly figure object with lines representing metrics and
|
155 |
+
horizontal dotted lines representing human baselines.
|
156 |
"""
|
157 |
+
|
158 |
+
# Filter the DataFrame based on the specified metrics
|
159 |
df = df[df["Metric Name"].isin(metrics)]
|
160 |
|
161 |
+
# Filter the human baselines based on the specified metrics
|
162 |
filtered_human_baselines = {k: v for k, v in human_baselines.items() if k in metrics}
|
163 |
|
164 |
+
# Create a line figure using plotly express with specified markers and custom data
|
165 |
+
fig = px.line(
|
166 |
+
df,
|
167 |
+
x="Result Date",
|
168 |
+
y="Metric Value",
|
169 |
+
color="Metric Name",
|
170 |
+
markers=True,
|
171 |
+
custom_data=["Metric Name", "Metric Value", "Model Name"],
|
172 |
+
title=title,
|
173 |
)
|
174 |
|
175 |
+
# Update hovertemplate for better hover interaction experience
|
176 |
+
fig.update_traces(
|
177 |
+
hovertemplate="<br>".join(
|
178 |
+
[
|
179 |
+
"Model Name: %{customdata[2]}",
|
180 |
+
"Metric Name: %{customdata[0]}",
|
181 |
+
"Date: %{x}",
|
182 |
+
"Metric Value: %{y}",
|
183 |
+
]
|
184 |
+
)
|
185 |
)
|
186 |
|
187 |
+
# Create a dictionary to hold the color mapping for each metric
|
188 |
+
metric_color_mapping = {}
|
189 |
+
|
190 |
+
# Map each metric name to its color in the figure
|
191 |
+
for trace in fig.data:
|
192 |
+
metric_color_mapping[trace.name] = trace.line.color
|
193 |
+
|
194 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
195 |
+
for metric, value in filtered_human_baselines.items():
|
196 |
+
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
197 |
+
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
198 |
+
# Add horizontal line with matched color and positioned annotation
|
199 |
+
fig.add_hline(
|
200 |
+
y=value,
|
201 |
+
line_dash="dot",
|
202 |
+
annotation_text=f"{metric} human baseline",
|
203 |
+
annotation_position=location,
|
204 |
+
annotation_font_size=10,
|
205 |
+
annotation_font_color=color,
|
206 |
+
line_color=color,
|
207 |
+
)
|
208 |
+
|
209 |
+
return fig
|
210 |
+
|
211 |
+
|
212 |
+
# Example Usage:
|
213 |
+
# human_baselines dictionary is defined.
|
214 |
+
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|