Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
·
705a80c
1
Parent(s):
b7d036c
read_evals initial change
Browse files- pyproject.toml +11 -5
- src/envs.py +1 -1
- src/leaderboard/read_evals.py +101 -89
pyproject.toml
CHANGED
@@ -1,9 +1,15 @@
|
|
1 |
[tool.ruff]
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
[tool.isort]
|
9 |
profile = "black"
|
|
|
1 |
[tool.ruff]
|
2 |
+
line-length = 120
|
3 |
+
target-version = "py312"
|
4 |
+
include = ["*.py", "*.pyi", "**/pyproject.toml", "*.ipynb"]
|
5 |
+
ignore=["I","EM","FBT","TRY003","S101","D101","D102","D103","D104","D105","G004","D107","FA102"]
|
6 |
+
fixable=["ALL"]
|
7 |
+
select=["ALL"]
|
8 |
+
|
9 |
+
[tool.ruff.lint]
|
10 |
+
select = ["E", "F"]
|
11 |
+
fixable = ["ALL"]
|
12 |
+
ignore = ["E501"] # line too long (black is taking care of this)
|
13 |
|
14 |
[tool.isort]
|
15 |
profile = "black"
|
src/envs.py
CHANGED
@@ -26,7 +26,7 @@ if not os.access(HF_HOME, os.W_OK):
|
|
26 |
HF_HOME = "."
|
27 |
os.environ["HF_HOME"] = HF_HOME
|
28 |
else:
|
29 |
-
print(
|
30 |
|
31 |
EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
|
32 |
EVAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
|
|
|
26 |
HF_HOME = "."
|
27 |
os.environ["HF_HOME"] = HF_HOME
|
28 |
else:
|
29 |
+
print("Write access confirmed for HF_HOME")
|
30 |
|
31 |
EVAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
|
32 |
EVAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
|
src/leaderboard/read_evals.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
import glob
|
2 |
import json
|
|
|
|
|
|
|
3 |
import math
|
4 |
import os
|
5 |
-
from dataclasses import dataclass
|
|
|
6 |
|
7 |
import dateutil
|
8 |
import numpy as np
|
@@ -10,117 +13,124 @@ import numpy as np
|
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
12 |
|
|
|
|
|
13 |
|
14 |
@dataclass
|
15 |
class EvalResult:
|
16 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
17 |
-
eval_name: str
|
18 |
-
full_model: str
|
19 |
-
org: str
|
20 |
model: str
|
21 |
-
revision: str
|
22 |
-
results:
|
23 |
precision: Precision = Precision.Unknown
|
24 |
-
model_type: ModelType = ModelType.Unknown
|
25 |
-
weight_type: WeightType = WeightType.Original
|
26 |
-
architecture: str = "Unknown"
|
27 |
license: str = "?"
|
28 |
likes: int = 0
|
29 |
num_params: int = 0
|
30 |
-
date: str = ""
|
31 |
still_on_hub: bool = True
|
32 |
is_merge: bool = False
|
33 |
flagged: bool = False
|
34 |
status: str = "FINISHED"
|
35 |
-
tags
|
36 |
-
|
|
|
|
|
37 |
@classmethod
|
38 |
-
def init_from_json_file(
|
39 |
-
|
40 |
-
with open(json_filepath) as fp:
|
41 |
data = json.load(fp)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Get model and org
|
50 |
-
org_and_model = config.get("model_name")
|
51 |
-
org_and_model = org_and_model.split("/", 1)
|
52 |
-
|
53 |
-
if len(org_and_model) == 1:
|
54 |
-
org = None
|
55 |
-
model = org_and_model[0]
|
56 |
-
result_key = f"{model}_{precision.value.name}"
|
57 |
-
else:
|
58 |
-
org = org_and_model[0]
|
59 |
-
model = org_and_model[1]
|
60 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
61 |
full_model = "/".join(org_and_model)
|
62 |
|
63 |
-
|
64 |
-
results = {}
|
65 |
-
for task in Tasks:
|
66 |
-
task = task.value
|
67 |
-
# We skip old mmlu entries
|
68 |
-
wrong_mmlu_version = False
|
69 |
-
if task.benchmark == "hendrycksTest":
|
70 |
-
for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
|
71 |
-
if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
|
72 |
-
wrong_mmlu_version = True
|
73 |
-
|
74 |
-
if wrong_mmlu_version:
|
75 |
-
continue
|
76 |
-
|
77 |
-
# Some truthfulQA values are NaNs
|
78 |
-
if task.benchmark == "truthfulqa:mc" and "harness|truthfulqa:mc|0" in data["results"]:
|
79 |
-
if math.isnan(float(data["results"]["harness|truthfulqa:mc|0"][task.metric])):
|
80 |
-
results[task.benchmark] = 0.0
|
81 |
-
continue
|
82 |
-
|
83 |
-
# We average all scores of a given metric (mostly for mmlu)
|
84 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
85 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
86 |
-
continue
|
87 |
|
88 |
-
|
89 |
-
results[task.benchmark] = mean_acc
|
90 |
-
|
91 |
-
return self(
|
92 |
eval_name=result_key,
|
93 |
full_model=full_model,
|
94 |
org=org,
|
95 |
model=model,
|
96 |
results=results,
|
97 |
precision=precision,
|
98 |
-
revision=config.get("model_sha", "")
|
99 |
)
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
|
|
106 |
with open(request_file, "r") as f:
|
107 |
request = json.load(f)
|
|
|
108 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
109 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
110 |
-
self.num_params = request.get("params", 0)
|
111 |
self.date = request.get("submitted_time", "")
|
112 |
self.architecture = request.get("architectures", "Unknown")
|
113 |
self.status = request.get("status", "FAILED")
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
self.status = "FAILED"
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
def update_with_dynamic_file_dict(self, file_dict):
|
|
|
|
|
119 |
self.license = file_dict.get("license", "?")
|
120 |
-
self.likes = file_dict.get("likes", 0)
|
121 |
-
self.still_on_hub = file_dict
|
122 |
self.tags = file_dict.get("tags", [])
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
def to_dict(self):
|
126 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
@@ -149,26 +159,28 @@ class EvalResult:
|
|
149 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
150 |
|
151 |
return data_dict
|
152 |
-
|
153 |
|
154 |
def get_request_file_for_model(requests_path, model_name, precision):
|
155 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
request_files =
|
161 |
-
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
req_content = json.load(f)
|
168 |
-
if req_content["status"]
|
169 |
-
request_file
|
170 |
-
|
171 |
-
|
|
|
172 |
|
173 |
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
|
174 |
"""From the path of the results folder root, extract all needed info for results"""
|
@@ -220,4 +232,4 @@ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: st
|
|
220 |
except KeyError: # not all eval values present
|
221 |
continue
|
222 |
|
223 |
-
return results
|
|
|
|
|
1 |
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from json import JSONDecodeError
|
4 |
+
import logging
|
5 |
import math
|
6 |
import os
|
7 |
+
from dataclasses import dataclass, field
|
8 |
+
from typing import Optional, Dict, List
|
9 |
|
10 |
import dateutil
|
11 |
import numpy as np
|
|
|
13 |
from src.display.formatting import make_clickable_model
|
14 |
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
15 |
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
|
19 |
@dataclass
|
20 |
class EvalResult:
|
21 |
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
22 |
+
eval_name: str # org_model_precision (uid)
|
23 |
+
full_model: str # org/model (path on hub)
|
24 |
+
org: Optional[str]
|
25 |
model: str
|
26 |
+
revision: str # commit hash, "" if main
|
27 |
+
results: Dict[str, float]
|
28 |
precision: Precision = Precision.Unknown
|
29 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
30 |
+
weight_type: WeightType = WeightType.Original
|
31 |
+
architecture: str = "Unknown" # From config file
|
32 |
license: str = "?"
|
33 |
likes: int = 0
|
34 |
num_params: int = 0
|
35 |
+
date: str = "" # submission date of request file
|
36 |
still_on_hub: bool = True
|
37 |
is_merge: bool = False
|
38 |
flagged: bool = False
|
39 |
status: str = "FINISHED"
|
40 |
+
# List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
|
41 |
+
tags: List[str] = field(default_factory=list)
|
42 |
+
|
43 |
+
|
44 |
@classmethod
|
45 |
+
def init_from_json_file(cls, json_filepath: str) -> 'EvalResult':
|
46 |
+
with open(json_filepath, 'r') as fp:
|
|
|
47 |
data = json.load(fp)
|
48 |
|
49 |
+
config = data.get("config_general", {})
|
50 |
+
precision = Precision.from_str(config.get("model_dtype", "unknown"))
|
51 |
+
org_and_model = config.get("model_name", "").split("/", 1)
|
52 |
+
org = org_and_model[0] if len(org_and_model) > 1 else None
|
53 |
+
model = org_and_model[-1]
|
54 |
+
result_key = "_".join(filter(None, [*org_and_model, precision.value.name]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
full_model = "/".join(org_and_model)
|
56 |
|
57 |
+
results = cls.extract_results(data) # Properly call the method to extract results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
return cls(
|
|
|
|
|
|
|
60 |
eval_name=result_key,
|
61 |
full_model=full_model,
|
62 |
org=org,
|
63 |
model=model,
|
64 |
results=results,
|
65 |
precision=precision,
|
66 |
+
revision=config.get("model_sha", "")
|
67 |
)
|
68 |
|
69 |
+
@staticmethod
|
70 |
+
def extract_results(data: Dict) -> Dict[str, float]:
|
71 |
+
results = {}
|
72 |
+
for task in Tasks:
|
73 |
+
task_value = task.value
|
74 |
|
75 |
+
if task_value.benchmark == "hendrycksTest":
|
76 |
+
if any(data.get("versions", {}).get(mmlu_k, 1) == 0 for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]):
|
77 |
+
continue
|
78 |
+
|
79 |
+
if task_value.benchmark == "truthfulqa:mc":
|
80 |
+
task_key = "harness|truthfulqa:mc|0"
|
81 |
+
if task_key in data["results"]:
|
82 |
+
task_metric_value = data["results"][task_key][task_value.metric]
|
83 |
+
if math.isnan(float(task_metric_value)):
|
84 |
+
results[task_value.benchmark] = 0.0
|
85 |
+
continue
|
86 |
+
|
87 |
+
accs = [float(v.get(task_value.metric, 0)) for k, v in data["results"].items() if task_value.benchmark in k and v.get(task_value.metric, None) is not None]
|
88 |
+
if accs:
|
89 |
+
mean_acc = np.mean(accs) * 100.0
|
90 |
+
results[task_value.benchmark] = mean_acc
|
91 |
+
|
92 |
+
return results
|
93 |
+
|
94 |
+
|
95 |
+
def update_with_request_file(self, requests_path):
|
96 |
+
"""Finds the relevant request file for the current model and updates info with it."""
|
97 |
try:
|
98 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
99 |
with open(request_file, "r") as f:
|
100 |
request = json.load(f)
|
101 |
+
|
102 |
self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
|
103 |
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
104 |
+
self.num_params = int(request.get("params", 0)) # Ensuring type safety
|
105 |
self.date = request.get("submitted_time", "")
|
106 |
self.architecture = request.get("architectures", "Unknown")
|
107 |
self.status = request.get("status", "FAILED")
|
108 |
+
|
109 |
+
except FileNotFoundError:
|
110 |
+
self.status = "FAILED"
|
111 |
+
logging.error(f"Request file not found for {self.org}/{self.model}")
|
112 |
+
except JSONDecodeError:
|
113 |
self.status = "FAILED"
|
114 |
+
logging.error(f"Error decoding JSON from the request file for {self.org}/{self.model}")
|
115 |
+
except KeyError as e:
|
116 |
+
self.status = "FAILED"
|
117 |
+
logging.error(f"Key error {e} in processing request file for {self.org}/{self.model}")
|
118 |
+
except Exception as e: # Catch-all for any other unexpected exceptions
|
119 |
+
self.status = "FAILED"
|
120 |
+
logging.error(f"Unexpected error {e} for {self.org}/{self.model}")
|
121 |
+
|
122 |
|
123 |
def update_with_dynamic_file_dict(self, file_dict):
|
124 |
+
"""Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
|
125 |
+
# Default values set for optional or potentially missing keys.
|
126 |
self.license = file_dict.get("license", "?")
|
127 |
+
self.likes = int(file_dict.get("likes", 0)) # Ensure likes is treated as an integer
|
128 |
+
self.still_on_hub = file_dict.get("still_on_hub", False) # Default to False if key is missing
|
129 |
self.tags = file_dict.get("tags", [])
|
130 |
+
|
131 |
+
# Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
|
132 |
+
self.flagged = "flagged" in self.tags
|
133 |
+
|
134 |
|
135 |
def to_dict(self):
|
136 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
159 |
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
160 |
|
161 |
return data_dict
|
162 |
+
|
163 |
|
164 |
def get_request_file_for_model(requests_path, model_name, precision):
|
165 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
166 |
+
requests_path = Path(requests_path)
|
167 |
+
pattern = f"{model_name}_eval_request_*.json"
|
168 |
+
|
169 |
+
# Using pathlib to find files matching the pattern
|
170 |
+
request_files = list(requests_path.glob(pattern))
|
171 |
+
|
172 |
+
# Sort the files by name in descending order to mimic 'reverse=True'
|
173 |
+
request_files.sort(reverse=True)
|
174 |
+
|
175 |
+
# Select the correct request file based on 'status' and 'precision'
|
176 |
+
for request_file in request_files:
|
177 |
+
with request_file.open("r") as f:
|
178 |
req_content = json.load(f)
|
179 |
+
if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
|
180 |
+
return str(request_file)
|
181 |
+
|
182 |
+
# Return empty string if no file found that matches criteria
|
183 |
+
return ""
|
184 |
|
185 |
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
|
186 |
"""From the path of the results folder root, extract all needed info for results"""
|
|
|
232 |
except KeyError: # not all eval values present
|
233 |
continue
|
234 |
|
235 |
+
return results
|