Clémentine commited on
Commit
8e899eb
1 Parent(s): 58b553a

tooltip + range devices

Browse files
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/quickFilters.js CHANGED
@@ -1,19 +1,29 @@
1
  export const QUICK_FILTER_PRESETS = [
 
 
 
 
 
 
 
 
 
 
2
  {
3
  id: 'small_models',
4
- label: 'Small Models',
5
- shortDescription: '1.7B-7B parameters',
6
- description: 'Lightweight models optimized for devices with limited resources. Ideal for mobile deployment or edge computing environments.',
7
  filters: {
8
- paramsRange: [1.7, 7],
9
  selectedBooleanFilters: ['is_for_edge_devices']
10
  }
11
  },
12
  {
13
  id: 'medium_models',
14
- label: 'Medium Models',
15
- shortDescription: '7B-70B parameters',
16
- description: 'Good balance between performance and required resources. Recommended for most use cases and standard server deployments.',
17
  filters: {
18
  paramsRange: [7, 70],
19
  selectedBooleanFilters: []
@@ -21,11 +31,11 @@ export const QUICK_FILTER_PRESETS = [
21
  },
22
  {
23
  id: 'large_models',
24
- label: 'Large Models',
25
- shortDescription: '70B+ parameters',
26
- description: 'Large-scale models offering the best performance but requiring significant resources. Ideal for applications requiring high accuracy with adapted infrastructure.',
27
  filters: {
28
- paramsRange: [70, 140],
29
  selectedBooleanFilters: []
30
  }
31
  },
 
1
  export const QUICK_FILTER_PRESETS = [
2
+ {
3
+ id: 'edge_device',
4
+ label: 'Edge Device Models',
5
+ shortDescription: 'Up to 3B parameters',
6
+ description: 'Lightweight models optimized for edge devices with limited resources. Ideal for mobile deployment or edge computing environments.',
7
+ filters: {
8
+ paramsRange: [0, 3],
9
+ selectedBooleanFilters: ['is_for_edge_devices']
10
+ }
11
+ },
12
  {
13
  id: 'small_models',
14
+ label: 'SmolLMs',
15
+ shortDescription: 'Up to 7B parameters',
16
+ description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
17
  filters: {
18
+ paramsRange: [0, 7],
19
  selectedBooleanFilters: ['is_for_edge_devices']
20
  }
21
  },
22
  {
23
  id: 'medium_models',
24
+ label: 'Middle ground models',
25
+ shortDescription: '7B-65B parameters',
26
+ description: 'Overall balance between performance and required resources.',
27
  filters: {
28
  paramsRange: [7, 70],
29
  selectedBooleanFilters: []
 
31
  },
32
  {
33
  id: 'large_models',
34
+ label: 'GPU-rich Models',
35
+ shortDescription: '65B+ parameters',
36
+ description: 'Large-scale models offering (in theory) the best performance but requiring significant resources. Requires adapted infrastructure.',
37
  filters: {
38
+ paramsRange: [85, 140],
39
  selectedBooleanFilters: []
40
  }
41
  },
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/tooltips.js CHANGED
@@ -324,20 +324,25 @@ export const UI_TOOLTIPS = {
324
  },
325
  ]),
326
  QUICK_FILTERS: createTooltipContent(
327
- "Filter models based on their size and capabilities:",
328
  [
329
  {
330
- label: "Small Models (1.7B-7B)",
 
 
 
 
 
331
  description:
332
  "Efficient models for consumer hardware and edge devices, optimized for fast inference.",
333
  },
334
  {
335
- label: "Medium Models (7B-70B)",
336
  description:
337
- "Balanced performance and resource usage, ideal for most production use cases.",
338
  },
339
  {
340
- label: "Large Models (70B+)",
341
  description:
342
  "State-of-the-art performance for complex tasks, requires significant computing power.",
343
  },
 
324
  },
325
  ]),
326
  QUICK_FILTERS: createTooltipContent(
327
+ "Filter models based on their size and applicable hardware:",
328
  [
329
  {
330
+ label: "Edge devices (Up to 3BB)",
331
+ description:
332
+ "Efficient models for edge devices, optimized for blazing fast inference.",
333
+ },
334
+ {
335
+ label: "Smol Models (1.7B-7B)",
336
  description:
337
  "Efficient models for consumer hardware and edge devices, optimized for fast inference.",
338
  },
339
  {
340
+ label: "Middle ground models (7B-65B)",
341
  description:
342
+ "A bit of everything here, with overall balanced performance and resource usage around 30B.",
343
  },
344
  {
345
+ label: "GPU-rich models (65B+)",
346
  description:
347
  "State-of-the-art performance for complex tasks, requires significant computing power.",
348
  },