Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Alina Lozovskaia
commited on
Commit
·
ecacc0f
1
Parent(s):
d131b6c
removed dummy column
Browse files- app.py +4 -11
- src/display/css_html_js.py +2 -7
- src/display/utils.py +23 -27
- src/leaderboard/filter_models.py +7 -8
- src/leaderboard/read_evals.py +0 -1
- src/tools/collections.py +2 -2
app.py
CHANGED
@@ -154,7 +154,7 @@ def load_query(request: gr.Request): # triggered only once at startup => read q
|
|
154 |
|
155 |
|
156 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
157 |
-
return df[(df[AutoEvalColumn.
|
158 |
|
159 |
|
160 |
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
@@ -163,14 +163,10 @@ def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
163 |
|
164 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
165 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
166 |
-
|
167 |
-
|
168 |
-
# AutoEvalColumn.model.name,
|
169 |
-
# We use COLS to maintain sorting
|
170 |
-
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
|
171 |
return filtered_df
|
172 |
|
173 |
-
|
174 |
def filter_queries(query: str, df: pd.DataFrame):
|
175 |
tmp_result_df = []
|
176 |
|
@@ -327,16 +323,13 @@ with demo:
|
|
327 |
|
328 |
leaderboard_table = gr.components.Dataframe(
|
329 |
value=leaderboard_df[
|
330 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
331 |
-
+ shown_columns.value
|
332 |
-
+ [AutoEvalColumn.dummy.name]
|
333 |
],
|
334 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
335 |
datatype=TYPES,
|
336 |
elem_id="leaderboard-table",
|
337 |
interactive=False,
|
338 |
visible=True,
|
339 |
-
# column_widths=["2%", "33%"]
|
340 |
)
|
341 |
|
342 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
|
|
154 |
|
155 |
|
156 |
def search_model(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
157 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False, na=False))]
|
158 |
|
159 |
|
160 |
def search_license(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
|
163 |
|
164 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
165 |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
166 |
+
# Use AutoEvalColumn.model.name directly if needed
|
167 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
|
|
|
|
|
|
|
168 |
return filtered_df
|
169 |
|
|
|
170 |
def filter_queries(query: str, df: pd.DataFrame):
|
171 |
tmp_result_df = []
|
172 |
|
|
|
323 |
|
324 |
leaderboard_table = gr.components.Dataframe(
|
325 |
value=leaderboard_df[
|
326 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
|
|
|
|
|
327 |
],
|
328 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
329 |
datatype=TYPES,
|
330 |
elem_id="leaderboard-table",
|
331 |
interactive=False,
|
332 |
visible=True,
|
|
|
333 |
)
|
334 |
|
335 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
src/display/css_html_js.py
CHANGED
@@ -1,9 +1,4 @@
|
|
1 |
custom_css = """
|
2 |
-
/* Hides the final AutoEvalColumn */
|
3 |
-
#llm-benchmark-tab-table table td:last-child,
|
4 |
-
#llm-benchmark-tab-table table th:last-child {
|
5 |
-
display: none;
|
6 |
-
}
|
7 |
|
8 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
9 |
table td:first-child,
|
@@ -44,7 +39,7 @@ table th:first-child {
|
|
44 |
background: none;
|
45 |
border: none;
|
46 |
}
|
47 |
-
|
48 |
#search-bar {
|
49 |
padding: 0px;
|
50 |
}
|
@@ -94,4 +89,4 @@ get_window_url_params = """
|
|
94 |
url_params = Object.fromEntries(params);
|
95 |
return url_params;
|
96 |
}
|
97 |
-
"""
|
|
|
1 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
4 |
table td:first-child,
|
|
|
39 |
background: none;
|
40 |
border: none;
|
41 |
}
|
42 |
+
|
43 |
#search-bar {
|
44 |
padding: 0px;
|
45 |
}
|
|
|
89 |
url_params = Object.fromEntries(params);
|
90 |
return url_params;
|
91 |
}
|
92 |
+
"""
|
src/display/utils.py
CHANGED
@@ -47,31 +47,29 @@ class ColumnContent:
|
|
47 |
dummy: bool = False
|
48 |
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
)
|
70 |
-
|
71 |
-
|
72 |
-
auto_eval_column_dict
|
73 |
-
# Dummy column for the search bar (hidden by the custom CSS)
|
74 |
-
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
75 |
|
76 |
# We use make dataclass to dynamically fill the scores from Tasks
|
77 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
@@ -99,7 +97,6 @@ baseline_row = {
|
|
99 |
AutoEvalColumn.truthfulqa.name: 25.0,
|
100 |
AutoEvalColumn.winogrande.name: 50.0,
|
101 |
AutoEvalColumn.gsm8k.name: 0.21,
|
102 |
-
AutoEvalColumn.dummy.name: "baseline",
|
103 |
AutoEvalColumn.model_type.name: "",
|
104 |
AutoEvalColumn.flagged.name: False,
|
105 |
}
|
@@ -124,7 +121,6 @@ human_baseline_row = {
|
|
124 |
AutoEvalColumn.truthfulqa.name: 94.0,
|
125 |
AutoEvalColumn.winogrande.name: 94.0,
|
126 |
AutoEvalColumn.gsm8k.name: 100,
|
127 |
-
AutoEvalColumn.dummy.name: "human_baseline",
|
128 |
AutoEvalColumn.model_type.name: "",
|
129 |
AutoEvalColumn.flagged.name: False,
|
130 |
}
|
|
|
47 |
dummy: bool = False
|
48 |
|
49 |
|
50 |
+
static_columns = [
|
51 |
+
["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)],
|
52 |
+
["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)],
|
53 |
+
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)],
|
54 |
+
["model_type", ColumnContent, ColumnContent("Type", "str", False)],
|
55 |
+
["architecture", ColumnContent, ColumnContent("Architecture", "str", False)],
|
56 |
+
["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)],
|
57 |
+
["precision", ColumnContent, ColumnContent("Precision", "str", False)],
|
58 |
+
["merged", ColumnContent, ColumnContent("Merged", "bool", False)],
|
59 |
+
["license", ColumnContent, ColumnContent("Hub License", "str", False)],
|
60 |
+
["params", ColumnContent, ColumnContent("#Params (B)", "number", False)],
|
61 |
+
["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)],
|
62 |
+
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)],
|
63 |
+
["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)],
|
64 |
+
["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)],
|
65 |
+
["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)],
|
66 |
+
]
|
67 |
+
|
68 |
+
# Append task specific columns using a comprehension
|
69 |
+
task_columns = [[task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)] for task in Tasks]
|
70 |
+
|
71 |
+
# Finally, combine them into one list
|
72 |
+
auto_eval_column_dict = static_columns + task_columns
|
|
|
|
|
73 |
|
74 |
# We use make dataclass to dynamically fill the scores from Tasks
|
75 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
97 |
AutoEvalColumn.truthfulqa.name: 25.0,
|
98 |
AutoEvalColumn.winogrande.name: 50.0,
|
99 |
AutoEvalColumn.gsm8k.name: 0.21,
|
|
|
100 |
AutoEvalColumn.model_type.name: "",
|
101 |
AutoEvalColumn.flagged.name: False,
|
102 |
}
|
|
|
121 |
AutoEvalColumn.truthfulqa.name: 94.0,
|
122 |
AutoEvalColumn.winogrande.name: 94.0,
|
123 |
AutoEvalColumn.gsm8k.name: 100,
|
|
|
124 |
AutoEvalColumn.model_type.name: "",
|
125 |
AutoEvalColumn.flagged.name: False,
|
126 |
}
|
src/leaderboard/filter_models.py
CHANGED
@@ -128,14 +128,11 @@ DO_NOT_SUBMIT_MODELS = [
|
|
128 |
"TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
|
129 |
]
|
130 |
|
131 |
-
|
132 |
def flag_models(leaderboard_data: list[dict]):
|
|
|
133 |
for model_data in leaderboard_data:
|
134 |
-
#
|
135 |
-
|
136 |
-
flag_key = "merged"
|
137 |
-
else:
|
138 |
-
flag_key = model_data["model_name_for_query"]
|
139 |
|
140 |
if flag_key in FLAGGED_MODELS:
|
141 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
@@ -152,16 +149,18 @@ def flag_models(leaderboard_data: list[dict]):
|
|
152 |
|
153 |
|
154 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
|
|
155 |
indices_to_remove = []
|
156 |
for ix, model in enumerate(leaderboard_data):
|
157 |
-
|
|
|
158 |
indices_to_remove.append(ix)
|
159 |
|
|
|
160 |
for ix in reversed(indices_to_remove):
|
161 |
leaderboard_data.pop(ix)
|
162 |
return leaderboard_data
|
163 |
|
164 |
-
|
165 |
def filter_models_flags(leaderboard_data: list[dict]):
|
166 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
167 |
flag_models(leaderboard_data)
|
|
|
128 |
"TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
|
129 |
]
|
130 |
|
|
|
131 |
def flag_models(leaderboard_data: list[dict]):
|
132 |
+
"""Flags models based on external criteria or flagged status."""
|
133 |
for model_data in leaderboard_data:
|
134 |
+
# Use the primary model name for checking flags
|
135 |
+
flag_key = model_data[AutoEvalColumn.model.name] # Use the direct model name
|
|
|
|
|
|
|
136 |
|
137 |
if flag_key in FLAGGED_MODELS:
|
138 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
|
|
149 |
|
150 |
|
151 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
152 |
+
"""Removes models from the leaderboard based on the DO_NOT_SUBMIT list."""
|
153 |
indices_to_remove = []
|
154 |
for ix, model in enumerate(leaderboard_data):
|
155 |
+
# Use the correct field that now holds the model name
|
156 |
+
if model[AutoEvalColumn.model.name] in DO_NOT_SUBMIT_MODELS:
|
157 |
indices_to_remove.append(ix)
|
158 |
|
159 |
+
# Remove the models from the list
|
160 |
for ix in reversed(indices_to_remove):
|
161 |
leaderboard_data.pop(ix)
|
162 |
return leaderboard_data
|
163 |
|
|
|
164 |
def filter_models_flags(leaderboard_data: list[dict]):
|
165 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
166 |
flag_models(leaderboard_data)
|
src/leaderboard/read_evals.py
CHANGED
@@ -133,7 +133,6 @@ class EvalResult:
|
|
133 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
134 |
AutoEvalColumn.architecture.name: self.architecture,
|
135 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
136 |
-
AutoEvalColumn.dummy.name: self.full_model,
|
137 |
AutoEvalColumn.revision.name: self.revision,
|
138 |
AutoEvalColumn.average.name: average,
|
139 |
AutoEvalColumn.license.name: self.license,
|
|
|
133 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
134 |
AutoEvalColumn.architecture.name: self.architecture,
|
135 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
136 |
AutoEvalColumn.revision.name: self.revision,
|
137 |
AutoEvalColumn.average.name: average,
|
138 |
AutoEvalColumn.license.name: self.license,
|
src/tools/collections.py
CHANGED
@@ -60,7 +60,7 @@ def update_collections(df: DataFrame):
|
|
60 |
for size, interval in intervals.items():
|
61 |
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
62 |
best_models = list(
|
63 |
-
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.
|
64 |
)
|
65 |
print(model_type.value.symbol, size, best_models)
|
66 |
_add_models_to_collection(collection, best_models, model_type, size)
|
@@ -73,4 +73,4 @@ def update_collections(df: DataFrame):
|
|
73 |
try:
|
74 |
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
75 |
except HfHubHTTPError:
|
76 |
-
continue
|
|
|
60 |
for size, interval in intervals.items():
|
61 |
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
62 |
best_models = list(
|
63 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.model.name][:10]
|
64 |
)
|
65 |
print(model_type.value.symbol, size, best_models)
|
66 |
_add_models_to_collection(collection, best_models, model_type, size)
|
|
|
73 |
try:
|
74 |
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN)
|
75 |
except HfHubHTTPError:
|
76 |
+
continue
|