import json import os from datetime import datetime, timezone from dataclasses import dataclass from transformers import AutoConfig from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import ( API, EVAL_REQUESTS_PATH, HF_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA, ) from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, user_submission_permission, ) REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None @dataclass class ModelSizeChecker: model: str precision: str model_size_in_b: float def get_precision_factor(self): if self.precision in ["float16", "bfloat16"]: return 1 elif self.precision == "8bit": return 2 elif self.precision == "4bit": return 4 elif self.precision == "GPTQ": config = AutoConfig.from_pretrained(self.model) num_bits = int(config.quantization_config["bits"]) bits_to_precision_factor = {2: 8, 3: 6, 4: 4, 8: 2} return bits_to_precision_factor.get(num_bits, 1) else: raise Exception(f"Unknown precision {self.precision}.") def can_evaluate(self): precision_factor = self.get_precision_factor() return self.model_size_in_b <= 140 * precision_factor def add_new_eval( model: str, base_model: str, revision: str, precision: str, weight_type: str, model_type: str, use_chat_template: bool, ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") # Is the user rate limited? if user_name != "": user_can_submit, error_msg = user_submission_permission( user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA ) if not user_can_submit: return styled_error(error_msg) # Did the model authors forbid its submission to the leaderboard? if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS: return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.") # Does the model actually exist? if revision == "": revision = "main" try: model_info = API.model_info(repo_id=model, revision=revision) except Exception as e: return styled_error("Could not get your model information. Please fill it up properly.") # Check model size early model_size = get_model_size(model_info=model_info, precision=precision) # First check: Absolute size limit for float16 and bfloat16 if precision in ["float16", "bfloat16"] and model_size > 100: return styled_error(f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. " f"Your model size: {model_size:.2f}B parameters.") # Second check: Precision-adjusted size limit size_checker = ModelSizeChecker(model=model, precision=precision, model_size_in_b=model_size) if not size_checker.can_evaluate(): precision_factor = size_checker.get_precision_factor() max_size = 140 * precision_factor return styled_error(f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically " f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters.") architecture = "?" # Is the model on the hub? if weight_type in ["Delta", "Adapter"]: base_model_on_hub, error, _ = is_model_on_hub( model_name=base_model, revision=model_info.sha, token=HF_TOKEN, test_tokenizer=True ) if not base_model_on_hub: return styled_error(f'Base model "{base_model}" {error}') if not weight_type == "Adapter": model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=model_info.sha, test_tokenizer=True) if not model_on_hub or model_config is None: return styled_error(f'Model "{model}" {error}') if model_config is not None: architectures = getattr(model_config, "architectures", None) if architectures: architecture = ";".join(architectures) # Were the model card and license filled? try: model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") modelcard_OK, error_msg, model_card = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) # Seems good, creating the eval print("Adding new eval") eval_entry = { "model": model, "base_model": base_model, "revision": model_info.sha, # force to use the exact model commit "precision": precision, "params": model_size, "architectures": architecture, "weight_type": weight_type, "status": "PENDING", "submitted_time": current_time, "model_type": model_type, "job_id": -1, "job_start_time": None, "use_chat_template": use_chat_template, } print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )