Spaces:
Sleeping
Sleeping
#from utils.multiple_stream import create_interface | |
import random | |
import gradio as gr | |
import json | |
import logging | |
import gc | |
import torch | |
from utils.data import dataset | |
from utils.multiple_stream import stream_data | |
from pages.summarization_playground import get_model_batch_generation | |
def create_arena(): | |
with gr.Blocks() as demo: | |
with gr.Group(): | |
gr.Markdown("## This is a playground to test prompts for clinical dialogue summarizations") | |
with open("prompt/prompt.json", "r") as file: | |
json_data = file.read() | |
prompts = json.loads(json_data) | |
datapoint = random.choice(dataset) | |
datapoint = datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue'] | |
submit_button = gr.Button("✨ Submit ✨") | |
with gr.Row(): | |
columns = [gr.Textbox(label=f"Column {i+1}", lines=10) for i in range(3)] | |
content_list = [prompt + '\n{' + datapoint + '}\n\nsummary:' for prompt in prompts] | |
model = get_model_batch_generation("Qwen/Qwen2-1.5B-Instruct") | |
def start_streaming(): | |
for data in stream_data(content_list, model): | |
updates = [gr.update(value=data[i]) for i in range(len(columns))] | |
yield tuple(updates) | |
submit_button.click( | |
fn=start_streaming, | |
inputs=[], | |
outputs=columns, | |
show_progress=False | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_arena() | |
demo.queue() | |
demo.launch() | |