Spaces:
Sleeping
Sleeping
from dotenv import load_dotenv | |
import gradio as gr | |
import json | |
import html | |
import logging | |
import numpy as np | |
from utils.model import Model | |
from utils.metric import metric_rouge_score | |
from pages.summarization_playground import generate_answer | |
from pages.summarization_playground import custom_css | |
load_dotenv() | |
def display_results(response_list): | |
overall_score = np.mean([r['metric_score']['rouge_score'] for r in response_list]) | |
html_output = f"<h2>Overall Score: {overall_score:.2f}</h2>" | |
for i, item in enumerate(response_list, 1): | |
dialogue = item['dialogue'] | |
summary = item['summary'] | |
response = item['response'] | |
rouge_score = item['metric_score']['rouge_score'] | |
dialogue = html.escape(item['dialogue']).replace('\n', '<br>') | |
summary = html.escape(item['summary']).replace('\n', '<br>') | |
response = html.escape(item['response']).replace('\n', '<br>') | |
html_output += f""" | |
<details> | |
<summary>Response {i} (Rouge Score: {rouge_score:.2f})</summary> | |
<div style="display: flex; justify-content: space-between;"> | |
<div style="width: 30%;"> | |
<h3>Dialogue</h3> | |
<pre style="white-space: pre-wrap; word-wrap: break-word;">{dialogue}</pre> | |
</div> | |
<div style="width: 30%;"> | |
<h3>Summary</h3> | |
<pre style="white-space: pre-wrap; word-wrap: break-word;">{summary}</pre> | |
</div> | |
<div style="width: 30%;"> | |
<h3>Response</h3> | |
<pre style="white-space: pre-wrap; word-wrap: break-word;">{response}</pre> | |
</div> | |
</div> | |
</details> | |
""" | |
return html_output | |
def process(model_selection, prompt, num=10): | |
response_list = [] | |
with open("test_samples/test_data.json", "r") as file: | |
json_data = file.read() | |
dataset = json.loads(json_data) | |
for i, data in enumerate(dataset): | |
logging.info(f"Start testing datapoint {i+1}") | |
dialogue = data['dialogue'] | |
format = data['format'] | |
summary = data['summary'] | |
response = generate_answer(dialogue, model_selection, prompt + f' Output following {format} format.') | |
rouge_score = metric_rouge_score(response, summary) | |
response_list.append( | |
{ | |
'dialogue': dialogue, | |
'summary': summary, | |
'response': response, | |
'metric_score': { | |
'rouge_score': rouge_score | |
} | |
} | |
) | |
logging.info(f"Complete testing datapoint {i+1}") | |
return display_results(response_list) | |
def create_batch_evaluation_interface(): | |
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm",text_size="sm"), css=custom_css) as demo: | |
gr.Markdown("## Here are evaluation setups. It will run though datapoints in test_data.josn to generate and evaluate. Show results once finished.") | |
model_dropdown = gr.Dropdown(choices=Model.__model_list__, label="Choose a model", value=Model.__model_list__[0]) | |
Template_text = gr.Textbox(value="""Summarize the following dialogue""", label='Input Prompting Template', lines=8, placeholder='Input your prompts') | |
submit_button = gr.Button("✨ Submit ✨") | |
output = gr.HTML(label="Results") | |
submit_button.click( | |
process, | |
inputs=[model_dropdown, Template_text], | |
outputs=output | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_batch_evaluation_interface() | |
demo.launch() |