kz209 commited on
Commit
de53991
·
1 Parent(s): 99a8f27

change from streamlit to gradio

Browse files
Files changed (5) hide show
  1. app.py +28 -11
  2. pages/arena.py +7 -19
  3. pages/summarization_example.py +36 -55
  4. test.py +57 -0
  5. utils/multiple_stream.py +46 -20
app.py CHANGED
@@ -1,18 +1,35 @@
1
- import streamlit as st
2
 
3
- st.set_page_config(
4
- page_title="Summarization Projects Demo",
5
- page_icon=":rocket:",
6
- )
7
 
8
- st.write("## Summarization Projects Demo :rocket:")
 
 
9
 
10
- st.markdown(
11
- """
12
  This application is for **internal use** and is designed to facilitate **fast prototyping** and **experimentation.**
13
 
14
- 👈 Select a demo from the sidebar to begin experimentation.
15
  """
16
- )
17
 
18
- st.sidebar.success("Select a demo above.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
 
3
+ from pages.arena import create_arena
4
+ from pages.summarization_example import create_summarization_interface
 
 
5
 
6
+ def welcome_message():
7
+ return """
8
+ ## Summarization Projects Demo :rocket:
9
 
 
 
10
  This application is for **internal use** and is designed to facilitate **fast prototyping** and **experimentation.**
11
 
12
+ Select a demo from the sidebar below to begin experimentation.
13
  """
 
14
 
15
+ with gr.Blocks() as demo:
16
+ with gr.Column(scale=4):
17
+ content = content = gr.Blocks(
18
+ gr.Markdown(
19
+ welcome_message()
20
+ )
21
+ )
22
+
23
+ with gr.Tabs() as tabs:
24
+ with gr.TabItem("Streaming"):
25
+ create_arena()
26
+ with gr.TabItem("Summarization"):
27
+ create_summarization_interface()
28
+ # with gr.TabItem("Page 3"):
29
+ # page3()
30
+
31
+
32
+ if __name__ == "__main__":
33
+ demo.launch()
34
+
35
+ #iface.launch() # launch the Gradio app
pages/arena.py CHANGED
@@ -1,21 +1,9 @@
1
- import sys
2
- from concurrent.futures import ThreadPoolExecutor
3
 
4
- import streamlit as st
5
- from streamlit.runtime.scriptrunner.script_run_context import \
6
- get_script_run_ctx
 
7
 
8
- sys.path.append(".") # Add parent directory to Python path
9
-
10
- from utils.multiple_stream import stream_data_in_column
11
-
12
- if st.button("Stream data"):
13
- # Define layout
14
- columns = st.columns(2)
15
-
16
- # Submit concurrent tasks
17
- with ThreadPoolExecutor(max_workers=2) as executor:
18
- ctx = get_script_run_ctx()
19
- futures = [
20
- executor.submit(stream_data_in_column, col, ctx) for col in columns
21
- ]
 
1
+ import gradio as gr
2
+ from utils.multiple_stream import create_interface
3
 
4
+ def create_arena():
5
+ demo = create_interface()
6
+ #demo.queue()
7
+ #demo.launch()
8
 
9
+ return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/summarization_example.py CHANGED
@@ -1,10 +1,8 @@
1
  from dotenv import load_dotenv
2
- from openai import OpenAI
3
-
4
- import streamlit as st
5
 
6
  load_dotenv()
7
- st.write('## This is an example to show summarization')
8
 
9
  examples = {
10
  "example 1": """Boston's injury reporting for Kristaps Porziņģis has been fairly coy. He missed Game 3, but his coach told reporters just before Game 4 that was technically available, but with a catch.
@@ -21,63 +19,46 @@ All of that has led to postseason averages of 8.2 points, 7.6 rebounds, 1.4 assi
21
  Back in Boston, Kidd is going to rely on Lively even more. He'll play close to 30 minutes and reach double-figures in both scoring and rebounding again.""",
22
  }
23
 
24
- def generate_answer(lm, sources, model_name="gpt-4o"): # noqa: ANN201, ANN001
25
  meta_prompt = """
26
  {sources}
27
 
28
- summarization: """ # noqa: E501
29
- content = meta_prompt.format(
30
- sources=sources,
31
- )
32
-
33
- from transformers import pipeline
34
 
35
- messages = [
36
- {"role": "user", "content": content},
37
- ]
38
  pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True, max_length=500)
 
39
  answer = pipe(messages)
40
 
41
- # answer = lm.chat.completions.create(
42
- # temperature=0.8,
43
- # max_tokens=800,
44
- # messages=[
45
- # {
46
- # "role": "user",
47
- # "content": content,
48
- # },
49
- # ],
50
- # model=model_name,
51
- # )
52
-
53
- return answer
54
-
55
- example_selection = st.selectbox("Choose an example", options=list(examples.keys()), index=0)
56
- model_selection = st.selectbox("Choose a model", options=[
57
- "gpt-3.5-turbo",
58
- "gpt-4o",
59
- "gpt-4"
60
- ], index=0)
61
-
62
- # Input fields
63
- input_text1 = st.text_area("question", height=None, \
64
- placeholder="Enter first text here...", value=examples[example_selection])
65
-
66
-
67
-
68
- # Button to trigger processing
69
- #lm = OpenAI()
70
-
71
- if st.button('Submit'):
72
- if input_text1:
73
- response = generate_answer('', input_text1, model_selection)
74
- st.write('## Orginal Article:')
75
- st.markdown(examples[example_selection])
76
-
77
- st.write('## Summarization:')
78
- st.markdown(response.choices[0].message.content)
79
 
 
 
 
 
80
  else:
81
- # Show an error message if the required input is missing
82
- st.error("Please fill both inputs to generate outputs.")
83
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from dotenv import load_dotenv
2
+ from transformers import pipeline
3
+ import gradio as gr
 
4
 
5
  load_dotenv()
 
6
 
7
  examples = {
8
  "example 1": """Boston's injury reporting for Kristaps Porziņģis has been fairly coy. He missed Game 3, but his coach told reporters just before Game 4 that was technically available, but with a catch.
 
19
  Back in Boston, Kidd is going to rely on Lively even more. He'll play close to 30 minutes and reach double-figures in both scoring and rebounding again.""",
20
  }
21
 
22
+ def generate_answer(sources, model_name):
23
  meta_prompt = """
24
  {sources}
25
 
26
+ summarization: """
27
+ content = meta_prompt.format(sources=sources)
 
 
 
 
28
 
 
 
 
29
  pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True, max_length=500)
30
+ messages = [{"role": "user", "content": content}]
31
  answer = pipe(messages)
32
 
33
+ return answer[0]['generated_text']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ def process_input(input_text, model_selection):
36
+ if input_text:
37
+ response = generate_answer(input_text, model_selection)
38
+ return f"## Original Article:\n\n{input_text}\n\n## Summarization:\n\n{response}"
39
  else:
40
+ return "Please fill the input to generate outputs."
41
+
42
+ def update_input(example):
43
+ return examples[example]
44
+
45
+ def create_summarization_interface():
46
+ with gr.Blocks() as demo:
47
+ gr.Markdown("## This is an example to show summarization")
48
+
49
+ with gr.Row():
50
+ example_dropdown = gr.Dropdown(choices=list(examples.keys()), label="Choose an example")
51
+ model_dropdown = gr.Dropdown(choices=["gpt-3.5-turbo", "gpt-4o", "gpt-4"], label="Choose a model", value="gpt-3.5-turbo")
52
+
53
+ input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text here...")
54
+ submit_button = gr.Button("Submit")
55
+ output = gr.Markdown()
56
+
57
+ example_dropdown.change(update_input, inputs=[example_dropdown], outputs=[input_text])
58
+ submit_button.click(process_input, inputs=[input_text, model_dropdown], outputs=[output])
59
+
60
+ return demo
61
+
62
+ if __name__ == "__main__":
63
+ demo = create_summarization_interface()
64
+ demo.launch()
test.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+
4
+ def page1():
5
+ with gr.Group():
6
+ gr.Markdown("# Page 1 Content")
7
+ input_text = gr.Textbox(label="Enter some text")
8
+ output_text = gr.Textbox(label="Output")
9
+ button = gr.Button("Process")
10
+
11
+ def process_text(text):
12
+ return text.upper()
13
+
14
+ button.click(fn=process_text, inputs=input_text, outputs=output_text)
15
+
16
+ def page2():
17
+ with gr.Group():
18
+ gr.Markdown("# Page 2 Content")
19
+ num1 = gr.Number(label="Number 1")
20
+ num2 = gr.Number(label="Number 2")
21
+ result = gr.Number(label="Result")
22
+ add_btn = gr.Button("Add")
23
+
24
+ def add_numbers(a, b):
25
+ return a + b
26
+
27
+ add_btn.click(fn=add_numbers, inputs=[num1, num2], outputs=result)
28
+
29
+ def page3():
30
+ with gr.Group():
31
+ gr.Markdown("# Page 3 Content")
32
+ image_input = gr.Image()
33
+ image_output = gr.Image()
34
+ flip_btn = gr.Button("Flip Image")
35
+
36
+ def flip_image(img):
37
+ return np.fliplr(img) if img is not None else None
38
+
39
+ flip_btn.click(fn=flip_image, inputs=image_input, outputs=image_output)
40
+
41
+ with gr.Blocks() as demo:
42
+ with gr.Row():
43
+ with gr.Column(scale=1):
44
+ # Sidebar
45
+ gr.Markdown("### Navigation")
46
+
47
+ with gr.Column(scale=4):
48
+ # Main content area using Tabs
49
+ with gr.Tabs() as tabs:
50
+ with gr.TabItem("Page 1"):
51
+ page1()
52
+ with gr.TabItem("Page 2"):
53
+ page2()
54
+ with gr.TabItem("Page 3"):
55
+ page3()
56
+
57
+ demo.launch()
utils/multiple_stream.py CHANGED
@@ -1,34 +1,60 @@
1
  import copy
2
  import random
3
- from threading import currentThread
4
  from time import sleep
 
5
 
6
- import streamlit as st
7
- from streamlit.runtime.scriptrunner.script_run_context import \
8
- add_script_run_ctx
9
-
10
- _TEST_ = """
11
- Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have \
12
- showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal \
13
- reasoning tasks involving complex temporal logic.
14
- """
15
 
16
  def generate_data_test():
17
- """A generator to pass to st.write_stream"""
18
- temp = copy.deepcopy(_TEST_)
19
  l1 = temp.split()
20
  random.shuffle(l1)
21
  temp = ' '.join(l1)
22
-
23
  for word in temp.split(" "):
24
  yield word + " "
25
- sleep(0.1)
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- def stream_data_in_column(column, ctx):
29
- """Populate columns simultaneously"""
30
 
31
- add_script_run_ctx(currentThread(), ctx)
32
- print("11111111")
33
- with column:
34
- st.write_stream(generate_data_test)
 
1
  import copy
2
  import random
 
3
  from time import sleep
4
+ import gradio as gr
5
 
6
+ TEST = """ Test of Time. A Benchmark for Evaluating LLMs on Temporal Reasoning. Large language models (LLMs) have
7
+ showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal
8
+ reasoning tasks involving complex temporal logic. """
 
 
 
 
 
 
9
 
10
  def generate_data_test():
11
+ """Generator to yield words"""
12
+ temp = copy.deepcopy(TEST)
13
  l1 = temp.split()
14
  random.shuffle(l1)
15
  temp = ' '.join(l1)
 
16
  for word in temp.split(" "):
17
  yield word + " "
 
18
 
19
+ def stream_data(progress=gr.Progress()):
20
+ """Stream data to all columns"""
21
+ outputs = ["", "", ""]
22
+ generators = [generate_data_test() for _ in range(3)]
23
+
24
+ while True:
25
+ updated = False
26
+ for i, gen in enumerate(generators):
27
+ try:
28
+ word = next(gen)
29
+ outputs[i] += word
30
+ updated = True
31
+ except StopIteration:
32
+ pass
33
+
34
+ if not updated:
35
+ break
36
+
37
+ yield tuple(outputs)
38
+ sleep(0.01)
39
+
40
+ def create_interface():
41
+ with gr.Group():
42
+ with gr.Row():
43
+ col1 = gr.Textbox(label="Column 1", lines=10)
44
+ col2 = gr.Textbox(label="Column 2", lines=10)
45
+ col3 = gr.Textbox(label="Column 3", lines=10)
46
+
47
+ start_btn = gr.Button("Start Streaming")
48
+
49
+ start_btn.click(
50
+ fn=stream_data,
51
+ outputs=[col1, col2, col3],
52
+ show_progress=False
53
+ )
54
 
55
+ #return demo
 
56
 
57
+ if __name__ == "__main__":
58
+ demo = create_interface()
59
+ demo.queue()
60
+ demo.launch()