File size: 11,804 Bytes
9ac5ea2
ebe86df
38e70c4
 
 
 
 
ebe86df
fe8da28
38e70c4
 
ebe86df
 
 
 
c30da09
 
b5bfbc4
 
1bddee8
 
 
 
 
 
 
c30da09
 
fe8da28
 
 
 
 
 
 
cef1f1e
 
 
 
 
 
fe8da28
 
 
cef1f1e
 
 
 
 
 
 
 
 
1bddee8
fe8da28
 
 
 
 
1bddee8
 
 
 
 
 
fe8da28
 
 
 
cef1f1e
 
fe8da28
 
1bddee8
 
 
 
 
 
fe8da28
1bddee8
 
 
 
b5bfbc4
38e70c4
fe8da28
 
 
 
 
 
 
 
 
 
 
 
38e70c4
 
 
 
 
 
cef1f1e
 
 
 
 
 
 
 
 
 
 
38e70c4
 
 
 
 
 
 
 
 
c30da09
 
1bddee8
 
 
 
c30da09
 
 
e3dc221
1bddee8
 
 
 
 
 
 
 
 
 
 
38e70c4
9ac5ea2
 
38e70c4
1bddee8
 
 
 
 
 
 
 
38e70c4
 
1bddee8
cef1f1e
fe8da28
cef1f1e
fe8da28
 
1bddee8
 
 
 
 
 
 
 
 
fe8da28
 
 
 
 
 
 
 
 
 
1bddee8
 
 
 
 
 
 
 
 
 
fe8da28
 
 
 
 
 
 
 
 
38e70c4
9ac5ea2
 
 
38e70c4
cef1f1e
38e70c4
 
1bddee8
cef1f1e
38e70c4
b5bfbc4
1bddee8
cef1f1e
38e70c4
 
1bddee8
 
 
 
 
 
 
9ac5ea2
cef1f1e
 
b5bfbc4
cef1f1e
 
b5bfbc4
cef1f1e
b5bfbc4
cef1f1e
 
 
 
b5bfbc4
 
fe8da28
b5bfbc4
 
 
fe8da28
c16d907
b5bfbc4
cef1f1e
b5bfbc4
 
 
1bddee8
cef1f1e
 
 
 
9ac5ea2
b5bfbc4
 
1bddee8
cef1f1e
b5bfbc4
 
1bddee8
 
 
 
 
 
 
b5bfbc4
cef1f1e
 
fe8da28
cef1f1e
 
 
38e70c4
cef1f1e
38e70c4
cef1f1e
 
 
 
38e70c4
9ac5ea2
fe8da28
38e70c4
 
 
fe8da28
c16d907
fe8da28
cef1f1e
38e70c4
cef1f1e
38e70c4
cef1f1e
 
 
 
38e70c4
cef1f1e
 
 
38e70c4
 
bd334dc
38e70c4
bd334dc
12e35a6
38e70c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import collections
import os
from datetime import datetime, timedelta
import json
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
from urllib.parse import parse_qs, urlparse

from huggingface_hub import list_datasets, set_access_token, HfFolder
from datasets import load_dataset, DatasetDict, Dataset
import numpy as np

HF_TOKEN = os.environ['HF_TOKEN']
set_access_token(HF_TOKEN)
HfFolder.save_token(HF_TOKEN)


datasets = {
    "stars": load_dataset("open-source-metrics/stars").sort('dates'),
    "issues": load_dataset("open-source-metrics/issues").sort('dates'),
    "pip": load_dataset("open-source-metrics/pip").sort('day'),
}

external_datasets = {
    "stars": load_dataset("open-source-metrics/stars-external").sort('dates'),
    "issues": load_dataset("open-source-metrics/issues-external").sort('dates'),
    "pip": load_dataset("open-source-metrics/pip-external").sort('day')
}

val = 0


def _range(e):
    global val
    e['range'] = val
    val += 1

    current_date = datetime.strptime(e['dates'], "%Y-%m-%dT%H:%M:%SZ")
    first_date = datetime.fromtimestamp(1)
    week = abs(current_date - first_date).days // 7
    e['week'] = week

    return e


def _ignore_org_members(e):
    global val
    e['range_non_org'] = val

    if e['type']['authorAssociation'] != 'MEMBER':
        val += 1

    return e


stars = {}
for k, v in datasets['stars'].items():
    stars[k] = v.map(_range)
    val = 0

stars_external = {}
for k, v in external_datasets['stars'].items():
    stars_external[k] = v.map(_range)
    val = 0


issues = {}
for k, v in datasets['issues'].items():
    issues[k] = v.map(_range)
    val = 0
    issues[k] = issues[k].map(_ignore_org_members)
    val = 0


issues_external = {}
for k, v in external_datasets['issues'].items():
    issues_external[k] = v.map(_range)
    val = 0
    issues_external[k] = issues_external[k].map(_ignore_org_members)
    val = 0

datasets['stars'] = DatasetDict(**stars)
datasets['issues'] = DatasetDict(**issues)
external_datasets['stars'] = DatasetDict(**stars_external)
external_datasets['issues'] = DatasetDict(**issues_external)


def link_values(library_names, returned_values):
    previous_values = {library_name: None for library_name in library_names}
    for library_name in library_names:
        for i in returned_values.keys():
            if library_name not in returned_values[i]:
                returned_values[i][library_name] = previous_values[library_name]
            else:
                previous_values[library_name] = returned_values[i][library_name]

    return returned_values


def running_mean(x, N, total_length=-1):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    to_pad = max(total_length - len(cumsum), 0)
    return np.pad(cumsum[N:] - cumsum[:-N], (to_pad, 0)) / float(N)


def parse_name_and_options(path):
    url = urlparse(path)
    query = parse_qs(url.query)
    library_names = query.get("input", None)[0]
    library_names = library_names.split(',')
    options = query.get("options", None)[0]
    options = options.split(',')

    return library_names, options


class RequestHandler(SimpleHTTPRequestHandler):
    def do_GET(self):
        print(self.path)
        if self.path == "/":
            self.path = "index.html"

            return SimpleHTTPRequestHandler.do_GET(self)

        if self.path.startswith("/initialize"):
            dataset_keys = {k: set(v.keys()) for k, v in datasets.items()}
            dataset_with_most_splits = max([d for d in dataset_keys.values()], key=len)

            external_dataset_keys = {k: set(v.keys()) for k, v in external_datasets.items()}
            external_dataset_with_most_splits = max([d for d in external_dataset_keys.values()], key=len)

            warnings = []

            for k, v in dataset_keys.items():
                if len(v) < len(dataset_with_most_splits):
                    warnings.append(
                        f"The {k} dataset does not contain all splits. Missing: {dataset_with_most_splits - v}."
                        f"\nSelecting that split to show the pip install numbers will not work."
                    )

            for k, v in external_dataset_keys.items():
                if len(v) < len(external_dataset_with_most_splits):
                    warnings.append(
                        f"The {k} dataset does not contain all splits. Missing: {external_dataset_with_most_splits - v}"
                        f".\nSelecting that split to show the pip install numbers will not work."
                    )

            dataset_with_most_splits = list(dataset_with_most_splits)
            dataset_with_most_splits.sort()

            external_dataset_with_most_splits = list(external_dataset_with_most_splits)
            external_dataset_with_most_splits.sort()

            return self.response({
                'internal': list(dataset_with_most_splits),
                'external': external_dataset_with_most_splits,
                'warnings': warnings
            })

        if self.path.startswith("/retrievePipInstalls"):
            errors = []
            library_names, options = parse_name_and_options(self.path)

            if '1' in options:
                returned_values = {}
                for library_name in library_names:
                    ds = None
                    if library_name in datasets['pip']:
                        ds = datasets['pip'][library_name]
                    elif library_name in external_datasets['pip']:
                        ds = external_datasets['pip'][library_name]
                    else:
                        errors.append(f"No {library_name} found in internal or external datasets.")

                    for i in ds:
                        if i['day'] in returned_values:
                            returned_values[i['day']]['Cumulated'] += i['num_downloads']
                        else:
                            returned_values[i['day']] = {'Cumulated': i['num_downloads']}

                library_names = ['Cumulated']

            else:
                returned_values = {}
                for library_name in library_names:

                    if library_name in datasets['pip']:
                        ds = datasets['pip'][library_name]
                    elif library_name in external_datasets['pip']:
                        ds = external_datasets['pip'][library_name]
                    else:
                        errors.append(f"No {library_name} found in internal or external datasets for pip.")
                        return {'errors': errors}

                    for i in ds:
                        if i['day'] in returned_values:
                            returned_values[i['day']][library_name] = i['num_downloads']
                        else:
                            returned_values[i['day']] = {library_name: i['num_downloads']}

                for library_name in library_names:
                    for i in returned_values.keys():
                        if library_name not in returned_values[i]:
                            returned_values[i][library_name] = None

            returned_values = collections.OrderedDict(sorted(returned_values.items()))
            output = {l: [k[l] for k in returned_values.values()] for l in library_names}
            output['day'] = list(returned_values.keys())

            return self.response(output)

        if self.path.startswith("/retrieveStars"):
            errors = []
            library_names, options = parse_name_and_options(self.path)
            returned_values = {}
            dataset_dict = datasets['stars']
            external_dataset_dict = external_datasets['stars']
            week_over_week = '1' in options

            for library_name in library_names:
                if library_name in dataset_dict:
                    dataset = dataset_dict[library_name]
                elif library_name in external_dataset_dict:
                    dataset = external_dataset_dict[library_name]
                else:
                    errors.append(f"No {library_name} found in internal or external datasets for stars.")
                    return {'errors': errors}

                last_value = 0
                last_week = dataset[0]['week']
                for i in dataset:
                    if week_over_week and last_week == i['week']:
                        continue
                    if i['dates'] in returned_values:
                        returned_values[i['dates']][library_name] = i['range'] - last_value
                    else:
                        returned_values[i['dates']] = {library_name: i['range'] - last_value}

                    last_value = i['range'] if week_over_week else 0
                    last_week = i['week']

            returned_values = collections.OrderedDict(sorted(returned_values.items()))
            returned_values = link_values(library_names, returned_values)
            output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
            output['day'] = list(returned_values.keys())[::-1]

            # Trim down to a smaller number of points.
            output = {k: [v for i, v in enumerate(value) if i % max(1, int(len(value) / 100)) == 0] for k, value in output.items()}

            return self.response(output)


        if self.path.startswith("/retrieveIssues"):
            errors = []
            library_names, options = parse_name_and_options(self.path)

            exclude_org_members = '1' in options
            week_over_week = '2' in options

            returned_values = {}
            dataset_dict = datasets['issues']
            external_dataset_dict = external_datasets['issues']
            range_id = 'range' if not exclude_org_members else 'range_non_org'

            for library_name in library_names:
                if library_name in dataset_dict:
                    dataset = dataset_dict[library_name]
                elif library_name in external_dataset_dict:
                    dataset = external_dataset_dict[library_name]
                else:
                    errors.append(f"No {library_name} found in internal or external datasets for stars.")
                    return {'errors': errors}

                last_value = 0
                last_week = dataset[0]['week']
                for i in dataset:
                    if week_over_week and last_week == i['week']:
                        continue

                    if i['dates'] in returned_values:
                        returned_values[i['dates']][library_name] = i[range_id] - last_value
                    else:
                        returned_values[i['dates']] = {library_name: i[range_id] - last_value}

                    last_value = i[range_id] if week_over_week else 0
                    last_week = i['week']

            returned_values = collections.OrderedDict(sorted(returned_values.items()))
            returned_values = link_values(library_names, returned_values)
            output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
            output['day'] = list(returned_values.keys())[::-1]

            # Trim down to a smaller number of points.
            output = {k: [v for i, v in enumerate(value) if i % max(1, int(len(value) / 100)) == 0] for k, value in output.items()}

            return self.response(output)

        return SimpleHTTPRequestHandler.do_GET(self)

    def response(self, output):
        self.send_response(200)
        self.send_header("Content-Type", "application/json")
        self.end_headers()

        self.wfile.write(json.dumps(output).encode("utf-8"))

        return SimpleHTTPRequestHandler


server = ThreadingHTTPServer(("", 7860), RequestHandler)

print("Running on port 7860")

server.serve_forever()