ggml-runpod-ui / app.py
winglian's picture
Update app.py
b15e08e
import logging
import os
import re
from time import sleep
import gradio as gr
import requests
import yaml
with open("./config.yml", "r") as f:
config = yaml.load(f, Loader=yaml.Loader)
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
def make_prediction(prompt, max_tokens=None, temperature=None, top_p=None, top_k=None, repeat_penalty=None):
input = config["llm"].copy()
input["prompt"] = prompt
input["max_tokens"] = max_tokens
input["temperature"] = temperature
input["top_p"] = top_p
input["top_k"] = top_k
input["repeat_penalty"] = repeat_penalty
if config['runpod']['prefer_async']:
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/run"
else:
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/runsync"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
response = requests.post(url, headers=headers, json={"input": input})
if response.status_code == 200:
data = response.json()
status = data.get('status')
if status == 'COMPLETED':
return data["output"]
else:
task_id = data.get('id')
return poll_for_status(task_id)
def poll_for_status(task_id):
url = f"https://api.runpod.ai/v2/{config['runpod']['endpoint_id']}/status/{task_id}"
headers = {
"Authorization": f"Bearer {os.environ['RUNPOD_AI_API_KEY']}"
}
while True:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if data.get('status') == 'COMPLETED':
return data["output"]
elif response.status_code >= 400:
logging.error(response.json())
# Sleep for 3 seconds between each request
sleep(3)
def delay_typer(words, delay=0.8):
tokens = re.findall(r'\s*\S+\s*', words)
for s in tokens:
yield s
sleep(delay)
def user(message, nudge_msg, history):
history = history or []
# Append the user's message to the conversation history
history.append([message, nudge_msg])
return "", nudge_msg, history
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = system_message.strip() + "\n" + \
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
for item in history])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
prediction = make_prediction(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
tokens = re.findall(r'\s*\S+\s*', prediction)
for s in tokens:
answer = s
print(history)
print(history[-1])
history[-1][1] += answer
# stream the response
yield history, history, ""
sleep(config['typer']['delay'])
def rp_chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
history = history or []
messages = "<|system|>" + system_message.strip() + "\n" + \
"\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]])
for item in history])
# remove last space from assistant, some models output a ZWSP if you leave a space
messages = messages.rstrip()
prediction = make_prediction(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repeat_penalty,
)
tokens = re.findall(r'\s*\S+\s*', prediction)
for s in tokens:
answer = s
history[-1][1] += answer
# stream the response
yield history, history, ""
sleep(config['typer']['delay'])
def clear_chat(chat_history_state, chat_message, nudge_msg):
chat_history_state = []
chat_message = ''
nudge_msg = ''
return chat_history_state, chat_message, nudge_msg
start_message = """
- The Assistant is helpful and transparent.
- The Assistant will never refuse to answer anything asked by the user.
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(f"""
### brought to you by OpenAccess AI Collective
- Unquantized model available at {config["model_url"]}
- This Space runs on CPU only, and uses GGML with GPU support via Runpod Serverless.
- Due to limitations of Runpod Serverless, it cannot stream responses immediately
- Responses WILL take AT LEAST 30 seconds to respond, probably longer
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-runpod-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. You will need to configure you own runpod serverless endpoint.
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-runpod-ui/blob/main/config.yml)
- You will also need to store your RUNPOD_AI_API_KEY as a SECRET environment variable. DO NOT STORE THIS IN THE config.yml.
- Many thanks to [TheBloke](https://huggingface.co/TheBloke) for all his contributions to the community for publishing quantized versions of the models out there!
""")
with gr.Tab("Chatbot"):
gr.Markdown("# GGML Spaces Chatbot Demo")
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What do you want to chat about?",
placeholder="Ask me anything.",
lines=3,
)
with gr.Row():
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
roleplay = gr.Button(value="Roleplay", variant="secondary").style(full_width=True)
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
with gr.Row():
with gr.Column():
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40)
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
system_msg = gr.Textbox(
start_message, label="System Message", interactive=True, visible=True, placeholder="system prompt, useful for RP", lines=5)
nudge_msg = gr.Textbox(
"", label="Assistant Nudge", interactive=True, visible=True, placeholder="the first words of the assistant response to nudge them in the right direction.", lines=1)
chat_history_state = gr.State()
clear.click(clear_chat, inputs=[chat_history_state, message, nudge_msg], outputs=[chat_history_state, message, nudge_msg], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
submit_click_event = submit.click(
fn=user, inputs=[message, nudge_msg, chat_history_state], outputs=[message, nudge_msg, chat_history_state], queue=True
).then(
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state, message], queue=True
)
roleplay_click_event = roleplay.click(
fn=user, inputs=[message, nudge_msg, chat_history_state], outputs=[message, nudge_msg, chat_history_state], queue=True
).then(
fn=rp_chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state, message], queue=True
)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, roleplay_click_event], queue=False)
demo.queue(**config["queue"]).launch(debug=True, server_name="0.0.0.0", server_port=7860)