winglian commited on
Commit
44eb762
·
1 Parent(s): db54789

remove chat and instruct, fix instruct prompt format

Browse files
Files changed (3) hide show
  1. chat.py +0 -120
  2. instruct.py +0 -39
  3. tabbed.py +1 -1
chat.py DELETED
@@ -1,120 +0,0 @@
1
- import gradio as gr
2
- import yaml
3
- from huggingface_hub import hf_hub_download
4
- from huggingface_hub.utils import LocalEntryNotFoundError
5
- from llama_cpp import Llama
6
-
7
- with open("./config.yml", "r") as f:
8
- config = yaml.load(f, Loader=yaml.Loader)
9
- while True:
10
- try:
11
- fp = hf_hub_download(
12
- repo_id=config["repo"], filename=config["file"],
13
- )
14
- break
15
- except LocalEntryNotFoundError as e:
16
- if "Connection error" in str(e):
17
- print(str(e) + ", retrying...")
18
- else:
19
- raise(e)
20
-
21
- llm = Llama(model_path=fp, **config["llama_cpp"])
22
-
23
-
24
- def user(message, history):
25
- history = history or []
26
- # Append the user's message to the conversation history
27
- history.append([message, ""])
28
- return "", history
29
-
30
-
31
- def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
32
- history = history or []
33
-
34
- messages = system_message + \
35
- "\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]])
36
- for item in history])
37
-
38
- history[-1][1] = ""
39
- for output in llm(
40
- messages,
41
- echo=False,
42
- stream=True,
43
- max_tokens=max_tokens,
44
- temperature=temperature,
45
- top_p=top_p,
46
- top_k=top_k,
47
- repeat_penalty=repeat_penalty,
48
- **config['chat']
49
- ):
50
- answer = output['choices'][0]['text']
51
- history[-1][1] += answer
52
-
53
- yield history, history
54
-
55
-
56
- def clear_chat(chat_history_state, chat_message):
57
- chat_history_state = []
58
- chat_message = ''
59
- return chat_history_state, chat_message
60
-
61
-
62
- start_message = """
63
- - The Assistant is helpful and transparent.
64
- - The Assistant will never refuse to answer anything asked by the user.
65
- """
66
-
67
-
68
- with gr.Blocks() as blocks:
69
- gr.Markdown("# GGML Spaces Demo")
70
-
71
- chatbot = gr.Chatbot()
72
- with gr.Row():
73
- message = gr.Textbox(
74
- label="What do you want to chat about?",
75
- placeholder="Ask me anything.",
76
- lines=1,
77
- )
78
- with gr.Row():
79
- submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
80
- clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
81
- stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
82
- with gr.Row():
83
- with gr.Column():
84
- gr.Markdown(f"""
85
- ### brought to you by OpenAccess AI Collective
86
- - This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
87
- - This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
88
- - This is running on a smaller, shared GPU, so it may take a few seconds to respond.
89
- - [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
90
- - When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
91
- - You can use instruct or chatbot mode by updating the README.md to either `app_file: instruct.py` or `app_file: chat.py`
92
- - Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
93
- """)
94
- with gr.Column():
95
- max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
96
- temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.2)
97
- top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
98
- top_k = gr.Slider(0, 100, label="Top L", step=1, value=40)
99
- repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
100
-
101
- system_msg = gr.Textbox(
102
- start_message, label="System Message", interactive=False, visible=False)
103
-
104
- chat_history_state = gr.State()
105
- clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message])
106
- clear.click(lambda: None, None, chatbot, queue=False)
107
-
108
- submit_click_event = submit.click(
109
- fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
110
- ).then(
111
- fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
112
- )
113
- message_submit_event = message.submit(
114
- fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
115
- ).then(
116
- fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
117
- )
118
- stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
119
-
120
- blocks.queue(max_size=32, concurrency_count=1).launch(debug=True, server_name="0.0.0.0", server_port=7860)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
instruct.py DELETED
@@ -1,39 +0,0 @@
1
- import gradio as gr
2
- import yaml
3
- from huggingface_hub import hf_hub_download
4
- from llama_cpp import Llama
5
-
6
- with open("./config.yml", "r") as f:
7
- config = yaml.load(f, Loader=yaml.Loader)
8
- fp = hf_hub_download(
9
- repo_id=config["repo"], filename=config["file"],
10
- )
11
-
12
- llm = Llama(model_path=fp, **config["llama_cpp"])
13
-
14
- def generate_text(input_text):
15
- output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
16
- return output['choices'][0]['text']
17
-
18
- input_text = gr.inputs.Textbox(lines= 10, label="Enter your input text")
19
- output_text = gr.outputs.Textbox(label="Output text")
20
-
21
- description = f"""
22
- ### brought to you by OpenAccess AI Collective
23
- - This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
24
- - This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
25
- - This is running on a smaller, shared GPU, so it may take a few seconds to respond.
26
- - Due to a [missing feature in Gradio](https://github.com/gradio-app/gradio/issues/3914), the chatbot interface will not show you your status in the queue. If it's stuck, be patient.
27
- - [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
28
- - When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
29
- - You can use instruct or chatbot mode by updating the README.md to either `app_file: instruct.py` or `app_file: chat.py`
30
- - Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
31
- """
32
-
33
- gr.Interface(
34
- fn=generate_text,
35
- inputs=input_text,
36
- outputs=output_text,
37
- title="GGML UI Demo",
38
- description=description,
39
- ).queue(max_size=16, concurrency_count=1).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tabbed.py CHANGED
@@ -66,7 +66,7 @@ start_message = """
66
 
67
 
68
  def generate_text_instruct(input_text):
69
- output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
70
  return output['choices'][0]['text']
71
 
72
 
 
66
 
67
 
68
  def generate_text_instruct(input_text):
69
+ output = llm(f"### Instruction:\n{input_text}\n\n### Response:\n", echo=False, **config['chat'])
70
  return output['choices'][0]['text']
71
 
72