|
import os |
|
import re |
|
import gradio as gr |
|
import openai |
|
|
|
openai.api_base = os.environ.get("OPENAI_API_BASE") |
|
openai.api_key = os.environ.get("OPENAI_API_KEY") |
|
|
|
BASE_SYSTEM_MESSAGE = """I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning. |
|
I am an assistant who thinks through their answers step-by-step to be sure I always get the right answer. |
|
I think more clearly if I write out my thought process in a scratchpad manner first; therefore, I always explain background context, assumptions, and step-by-step thinking BEFORE trying to answer or solve anything.""" |
|
|
|
|
|
def make_prediction(prompt, max_tokens=None, temperature=None, top_p=None, top_k=None, repetition_penalty=None): |
|
completion = openai.Completion.create(model="openaccess-ai-collective/jackalope-7b", prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, stream=True, stop=["</s>", "<|im_end|>"]) |
|
for chunk in completion: |
|
yield chunk["choices"][0]["text"] |
|
|
|
|
|
def clear_chat(chat_history_state, chat_message): |
|
chat_history_state = [] |
|
chat_message = '' |
|
return chat_history_state, chat_message |
|
|
|
|
|
def user(message, history): |
|
history = history or [] |
|
|
|
history.append([message, ""]) |
|
return "", history |
|
|
|
|
|
def pop_last(history): |
|
turn = history.pop() |
|
|
|
history.append([turn[0], ""]) |
|
|
|
return history |
|
|
|
|
|
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty): |
|
history = history or [] |
|
|
|
sys_prompt = system_message.strip() or BASE_SYSTEM_MESSAGE |
|
messages = "<|im_start|> "+"system\n" + sys_prompt + "<|im_end|>\n" + \ |
|
"\n".join(["\n".join(["<|im_start|> "+"user\n"+item[0]+"<|im_end|>", "<|im_start|> assistant\n"+item[1]+"<|im_end|>"]) |
|
for item in history]) |
|
|
|
|
|
messages = messages.rstrip("<|im_end|>") |
|
|
|
messages = messages.rstrip() |
|
|
|
|
|
if temperature == 0: |
|
top_p = 1 |
|
top_k = -1 |
|
|
|
prediction = make_prediction( |
|
messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
for tokens in prediction: |
|
tokens = re.findall(r'(.*?)(\s|$)', tokens) |
|
for subtoken in tokens: |
|
subtoken = "".join(subtoken) |
|
answer = subtoken |
|
history[-1][1] += answer |
|
|
|
yield history, history, "" |
|
|
|
|
|
start_message = BASE_SYSTEM_MESSAGE |
|
|
|
CSS =""" |
|
.contain { display: flex; flex-direction: column; } |
|
.gradio-container { height: 100vh !important; } |
|
#component-0 { height: 100%; } |
|
#chatbot { flex-grow: 1; overflow: auto; resize: vertical; } |
|
""" |
|
|
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(f""" |
|
## This PREVIEW demo is an un-quantized GPU chatbot of [Jackalope 7B](https://huggingface.co/openaccess-ai-collective/jackalope-7b) |
|
- Completed model drops on Wednesday October 11th. |
|
- Brought to you by your friends at Open Access AI Collective, Alignment Lab AI, and OpenChat! |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
""") |
|
with gr.Row(): |
|
gr.Markdown("# π°π¦ Jackalope 7B Playground Space! π°π¦") |
|
with gr.Row(): |
|
system_msg = gr.Textbox( |
|
start_message, label="System Message", interactive=True, visible=True, placeholder="System prompt. Provide instructions which you want the model to remember.", lines=5) |
|
with gr.Row(): |
|
chatbot = gr.Chatbot(elem_id="chatbot").style(height=400) |
|
with gr.Row(): |
|
message = gr.Textbox( |
|
label="What do you want to chat about?", |
|
placeholder="Ask me anything.", |
|
lines=3, |
|
) |
|
with gr.Row(): |
|
submit = gr.Button(value="Send message", variant="primary").style(full_width=True) |
|
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) |
|
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) |
|
regenerate = gr.Button(value="Regenerate", variant="secondary").style(full_width=False) |
|
with gr.Accordion("Show Model Parameters", open=False): |
|
with gr.Row(): |
|
with gr.Column(): |
|
max_tokens = gr.Slider(20, 2500, label="Max Tokens", step=20, value=500) |
|
temperature = gr.Slider(0.0, 2.0, label="Temperature", step=0.1, value=0.4) |
|
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) |
|
top_k = gr.Slider(1, 100, label="Top K", step=1, value=40) |
|
repetition_penalty = gr.Slider(1.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) |
|
|
|
chat_history_state = gr.State() |
|
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
submit_click_event = submit.click( |
|
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True |
|
).then( |
|
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True |
|
) |
|
regenerate_click_event = regenerate.click( |
|
fn=pop_last, inputs=[chat_history_state], outputs=[chat_history_state], queue=True |
|
).then( |
|
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True |
|
) |
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, regenerate_click_event], queue=False) |
|
|
|
demo.queue(max_size=128, concurrency_count=48).launch(debug=True, server_name="0.0.0.0", server_port=7860) |