Jong Wook Kim
detector model
6f40009
raw
history blame
1.98 kB
import sys
from functools import reduce
from torch import nn
import torch.distributed as dist
def summary(model: nn.Module, file=sys.stdout):
def repr(model):
# We treat the extra repr like the sub-module, one item per line
extra_lines = []
extra_repr = model.extra_repr()
# empty string will be split into list ['']
if extra_repr:
extra_lines = extra_repr.split('\n')
child_lines = []
total_params = 0
for key, module in model._modules.items():
mod_str, num_params = repr(module)
mod_str = nn.modules.module._addindent(mod_str, 2)
child_lines.append('(' + key + '): ' + mod_str)
total_params += num_params
lines = extra_lines + child_lines
for name, p in model._parameters.items():
if hasattr(p, 'shape'):
total_params += reduce(lambda x, y: x * y, p.shape)
main_str = model._get_name() + '('
if lines:
# simple one-liner info, which most builtin Modules will use
if len(extra_lines) == 1 and not child_lines:
main_str += extra_lines[0]
else:
main_str += '\n ' + '\n '.join(lines) + '\n'
main_str += ')'
if file is sys.stdout:
main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
else:
main_str += ', {:,} params'.format(total_params)
return main_str, total_params
string, count = repr(model)
if file is not None:
if isinstance(file, str):
file = open(file, 'w')
print(string, file=file)
file.flush()
return count
def grad_norm(model: nn.Module):
total_norm = 0
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
return total_norm ** 0.5
def distributed():
return dist.is_available() and dist.is_initialized()