import json import numpy as np from typing import List import torch from torch.utils.data import Dataset from tqdm import tqdm from transformers import PreTrainedTokenizer from .download import download def load_texts(data_file, expected_size=None): texts = [] for line in tqdm(open(data_file), total=expected_size, desc=f'Loading {data_file}'): texts.append(json.loads(line)['text']) return texts class Corpus: def __init__(self, name, data_dir='data', skip_train=False): download(name, data_dir=data_dir) self.name = name self.train = load_texts(f'{data_dir}/{name}.train.jsonl', expected_size=250000) if not skip_train else None self.test = load_texts(f'{data_dir}/{name}.test.jsonl', expected_size=5000) self.valid = load_texts(f'{data_dir}/{name}.valid.jsonl', expected_size=5000) class EncodedDataset(Dataset): def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer, max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None, token_dropout: float = None, seed: int = None): self.real_texts = real_texts self.fake_texts = fake_texts self.tokenizer = tokenizer self.max_sequence_length = max_sequence_length self.min_sequence_length = min_sequence_length self.epoch_size = epoch_size self.token_dropout = token_dropout self.random = np.random.RandomState(seed) def __len__(self): return self.epoch_size or len(self.real_texts) + len(self.fake_texts) def __getitem__(self, index): if self.epoch_size is not None: label = self.random.randint(2) texts = [self.fake_texts, self.real_texts][label] text = texts[self.random.randint(len(texts))] else: if index < len(self.real_texts): text = self.real_texts[index] label = 1 else: text = self.fake_texts[index - len(self.real_texts)] label = 0 tokens = self.tokenizer.encode(text) if self.max_sequence_length is None: tokens = tokens[:self.tokenizer.max_len - 2] else: output_length = min(len(tokens), self.max_sequence_length) if self.min_sequence_length: output_length = self.random.randint(min(self.min_sequence_length, len(tokens)), output_length + 1) start_index = 0 if len(tokens) <= output_length else self.random.randint(0, len(tokens) - output_length + 1) end_index = start_index + output_length tokens = tokens[start_index:end_index] if self.token_dropout: dropout_mask = self.random.binomial(1, self.token_dropout, len(tokens)).astype(np.bool) tokens = np.array(tokens) tokens[dropout_mask] = self.tokenizer.unk_token_id tokens = tokens.tolist() if self.max_sequence_length is None or len(tokens) == self.max_sequence_length: mask = torch.ones(len(tokens) + 2) return torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]), mask, label padding = [self.tokenizer.pad_token_id] * (self.max_sequence_length - len(tokens)) tokens = torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] + padding) mask = torch.ones(tokens.shape[0]) mask[-len(padding):] = 0 return tokens, mask, label