Spaces:
Sleeping
Sleeping
File size: 7,746 Bytes
a006afd 3a92ba1 a006afd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
#import csv
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from dotenv import load_dotenv
import os
import requests
from io import BytesIO
import fitz
from PIL import Image
#init
load_dotenv()
# Global variables
COUNT, N = 0, 0
chat_history = []
chain = ''
pdf_file = None
pdf_url = None
enable_box = gr.Textbox.update(value=None,
placeholder='Upload your OpenAI API key', interactive=True)
disable_box = gr.Textbox.update(value='OpenAI API key is Set', interactive=False)
openai_api_key = os.getenv('OPENAI_API_KEY')
os.environ['OPENAI_API_KEY'] = openai_api_key
# Function to set the OpenAI API key
def set_apikey(api_key):
os.environ['OPENAI_API_KEY'] = api_key
return disable_box
# Function to enable the API key input box
def enable_api_box():
return enable_box
# Function to add text to the chat history
def add_text(history, text):
if not text:
raise gr.Error('Enter text')
history = history + [(text, '')]
return history
# Function to process the PDF file and create a conversation chain
def process_file(file):
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
# loader = PyPDFLoader(file.name)
loader = PyPDFLoader(file)
documents = loader.load()
embeddings = OpenAIEmbeddings()
pdfsearch = Chroma.from_documents(documents, embeddings)
chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True)
return chain
# Function to generate a response based on the chat history and query
# def generate_response(history, query, btn):
# global COUNT, N, chat_history, chain
# if not btn:
# raise gr.Error(message='Upload a PDF')
# if COUNT == 0:
# chain = process_file(btn)
# COUNT += 1
# result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
# chat_history += [(query, result["answer"])]
# N = list(result['source_documents'][0])[1][1]['page']
# for char in result['answer']:
# history[-1][-1] += char
# yield history, ''
def generate_response(history,query,btn):
global COUNT, N, chat_history, chain, pdf_file
# if not pdf_file and btn:
# raise gr.Error(message='Add a url that ends with .pdf')
if COUNT == 0:
if not pdf_file:
chain = process_file(btn.name)
else:
chain = process_file(pdf_url)
result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
chat_history += [(query, result["answer"])]
N = list(result['source_documents'][0])[1][1]['page']
for char in result['answer']:
history[-1][-1] += char
yield history, ''
# Function to render a specific page of a PDF file as an image
def render_file(file):
set_gobals_to_none
global N
doc = fitz.open(file.name)
page = doc[N]
# Render the page as a PNG image with a resolution of 300 DPI
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def render_pdf_url(url):
global N, pdf_url, pdf_file
pdf_url = url
response = requests.get(url)
if response.status_code == 200:
pdf_f = BytesIO(response.content)
doc = fitz.open(stream=pdf_f, filetype="pdf")
pdf_file = doc
page = doc[N]
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
# def render_pdf_url(url):
# global N, pdf_url, pdf_file
# pdf_url = url
# response = requests.get(url)
# if response.status_code == 200:
# pdf_f = BytesIO(response.content)
# doc = fitz.open(stream=pdf_f, filetype="pdf")
# pdf_file = doc
# # Check if N is within the valid range of pages
# if N < 0 or N >= len(doc):
# raise ValueError(f"Page number {N} is not within the valid range of pages (0 to {len(doc) - 1})")
# page = doc[N]
# pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
# # Use Image.frombuffer instead of Image.frombytes
# image = Image.frombuffer('RGB', [pix.width, pix.height], pix.samples, 'raw', 'RGB', 0, 1)
# return image
def rerender_pdf(url):
global N, pdf_file
page = pdf_file[N]
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def choose_render(url):
global pdf_file, pdf_url
if not pdf_file:
return render_file(url)
else:
return rerender_pdf(url)
def set_gobals_to_none():
global pdf_file, pdf_url
pdf_file,pdf_url = None
# Gradio application setup
with gr.Blocks(css= "footer {visibility: hidden}", title="DocDialogue", analytics_enabled=True) as demo:
# Create a Gradio block
gr.Markdown("Have dialogue with your pdf documents")
with gr.Column():
# with gr.Row():
# with gr.Column(scale=0.8):
# api_key = gr.Textbox(
# placeholder='Enter OpenAI API key',
# show_label=False,
# interactive=True
# ).style(container=False)
# with gr.Column(scale=0.2):
# change_api_key = gr.Button('Change Key')
with gr.Row():
with gr.Column(scale=0.8):
pdf_url = gr.Textbox(placeholder="Enter PDF url",show_label=False, interactive=True)
with gr.Column(scale=0.2):
pdf_url_btn = gr.Button(size='lg',value='Submit')
with gr.Row():
chatbot = gr.Chatbot(value=[], elem_id='chatbot', height=680 ,label="Chat")
show_img = gr.Image(label='Upload PDF', tool='select', height=680)
with gr.Row():
with gr.Column(scale=0.70):
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False
)
with gr.Column(scale=0.15):
submit_btn = gr.Button('Submit')
with gr.Column(scale=0.15):
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
# Set up event handlers
# Event handler for submitting the OpenAI API key
# api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key])
# Event handler for changing the API key
# change_api_key.click(fn=enable_api_box, outputs=[api_key])
# Event handler for uploading a PDF
btn.upload(fn=render_file, inputs=[btn], outputs=[show_img])
pdf_url_btn.click(fn=render_pdf_url, inputs=[pdf_url], outputs=[show_img])
# Event handler for submitting text and generating response
submit_btn.click(
fn=add_text,
inputs=[chatbot, txt],
outputs=[chatbot],
queue=False
).success(
fn=generate_response,
inputs=[chatbot, txt, btn],
outputs=[chatbot, txt]
).success(
fn=choose_render,
inputs=[btn],
outputs=[show_img]
)
demo.queue()
if __name__ == "__main__":
demo.launch()
# Run
# gradio chatwithpdf.py |