Spaces:
Build error
Build error
File size: 13,959 Bytes
83c7368 7a95d7a 206c195 12ca36b 83c7368 12ca36b 96e83f4 83c7368 12ca36b b1ee3a4 35153c2 12ca36b 77d952e 640dc7a 35153c2 77d952e 206c195 7a95d7a 12ca36b d03f5ec 12ca36b d03f5ec 12ca36b d03f5ec 12ca36b d03f5ec 12ca36b d03f5ec 640dc7a 12ca36b 640dc7a 12ca36b 35153c2 12ca36b 35153c2 12ca36b d03f5ec 12ca36b d03f5ec 12ca36b 206c195 12ca36b d03f5ec 12ca36b d03f5ec 35153c2 12ca36b 35153c2 12ca36b d03f5ec 35153c2 d03f5ec 12ca36b d03f5ec 12ca36b 35153c2 d03f5ec 35153c2 206c195 12ca36b 35153c2 12ca36b 35153c2 12ca36b d03f5ec 12ca36b 35153c2 d03f5ec 12ca36b 35153c2 12ca36b 35153c2 9324baf b1ee3a4 27f7acd d03f5ec 12ca36b 206c195 12ca36b 640dc7a d03f5ec 640dc7a 35153c2 640dc7a 35153c2 640dc7a 53423c0 640dc7a 53423c0 640dc7a 53423c0 640dc7a 4c8c6b4 640dc7a 35153c2 640dc7a 12ca36b 640dc7a d03f5ec 12ca36b 640dc7a 35153c2 640dc7a 35153c2 640dc7a 35153c2 640dc7a 35153c2 640dc7a 12ca36b 640dc7a 4c8c6b4 fdda1da b1ee3a4 12ca36b ea36e3b 12ca36b fdda1da ea36e3b 12ca36b ea36e3b 12ca36b d03f5ec 640dc7a d03f5ec ea36e3b 640dc7a ea36e3b 4c8c6b4 fdda1da 4b7975c 7c17d65 35153c2 77d952e 4c8c6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import datetime
import json
import logging
import os
import duckdb
import ee
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import yaml
import numpy as np
from itertools import repeat
from utils.gradio import get_window_url_params
from utils import duckdb_queries as dq
# Logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
# Define constants
DATE = "2020-01-01"
YEAR = 2020
LOCATION = [-74.653370, 5.845328]
ROI_RADIUS = 20000
GEE_SERVICE_ACCOUNT = (
"climatebase-july-2023@ee-geospatialml-aquarry.iam.gserviceaccount.com"
)
INDICES_FILE = "indices.yaml"
START_YEAR = 2015
END_YEAR = 2022
class IndexGenerator:
"""
A class to generate indices and compute zonal means.
Args:
centroid (tuple): The centroid coordinates (latitude, longitude) of the region of interest.
year (int): The year for which indices are generated.
roi_radius (int, optional): The radius (in meters) for creating a buffer around the centroid as the region of interest. Defaults to 20000.
project_name (str, optional): The name of the project. Defaults to "".
map (geemap.Map, optional): Map object for mapping. Defaults to None (i.e. no map created)
"""
def __init__(
self,
centroid,
roi_radius,
indices_file,
project_name="",
map=None,
):
# Authenticate to GEE & DuckDB
self._authenticate_ee(GEE_SERVICE_ACCOUNT)
# Set instance variables
self.indices = self._load_indices(indices_file)
self.centroid = centroid
self.roi = ee.Geometry.Point(*centroid).buffer(roi_radius)
# self.project_name = project_name
self.map = map
if self.map is not None:
self.show = True
else:
self.show = False
def _cloudfree(self, gee_path, daterange):
"""
Internal method to generate a cloud-free composite.
Args:
gee_path (str): The path to the Google Earth Engine (GEE) image or image collection.
Returns:
ee.Image: The cloud-free composite clipped to the region of interest.
"""
# Load a raw Landsat ImageCollection for a single year.
collection = (
ee.ImageCollection(gee_path).filterDate(*daterange).filterBounds(self.roi)
)
# Create a cloud-free composite with custom parameters for cloud score threshold and percentile.
composite_cloudfree = ee.Algorithms.Landsat.simpleComposite(
**{"collection": collection, "percentile": 75, "cloudScoreRange": 5}
)
return composite_cloudfree.clip(self.roi)
def _load_indices(self, indices_file):
# Read index configurations
with open(indices_file, "r") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as e:
logging.error(e)
return None
def show_map(self, map=None):
if map is not None:
self.map = map
self.show = True
def disable_map(self):
self.show = False
def generate_index(self, index_config, year):
"""
Generates an index based on the provided index configuration.
Args:
index_config (dict): Configuration for generating the index.
Returns:
ee.Image: The generated index clipped to the region of interest.
"""
# Calculate date range, assume 1 year
start_date = str(datetime.date(year, 1, 1))
end_date = str(datetime.date(year, 12, 31))
daterange = [start_date, end_date]
# Calculate index based on type
match index_config["gee_type"]:
case "image":
dataset = ee.Image(index_config["gee_path"]).clip(self.roi)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "image_collection":
dataset = (
ee.ImageCollection(index_config["gee_path"])
.filterBounds(self.roi)
.map(lambda image: image.clip(self.roi))
.mean()
)
if index_config.get("select"):
dataset = dataset.select(index_config["select"])
case "feature_collection":
dataset = (
ee.Image()
.float()
.paint(
ee.FeatureCollection(index_config["gee_path"]),
index_config["select"],
)
.clip(self.roi)
)
case "algebraic":
image = self._cloudfree(index_config["gee_path"], daterange)
# to-do: params should come from index_config
dataset = image.normalizedDifference(["B4", "B3"])
case _:
dataset = None
if not dataset:
raise Exception("Failed to generate dataset.")
# Whether to display on GEE map
if self.show and index_config.get("show"):
map.addLayer(dataset, index_config["viz"], index_config["name"])
logging.info(f"Generated index: {index_config['name']}")
return dataset
def zonal_mean_index(self, index_key, year):
index_config = self.indices[index_key]
dataset = self.generate_index(index_config, year)
# zm = self._zonal_mean(single, index_config.get('bandname') or 'constant')
out = dataset.reduceRegion(
**{
"reducer": ee.Reducer.mean(),
"geometry": self.roi,
"scale": 200, # map scale
}
).getInfo()
if index_config.get("bandname"):
return out[index_config.get("bandname")]
return out
def generate_composite_index_df(self, year, indices=[]):
data = {
"metric": indices,
"year": year,
"centroid": str(self.centroid),
"project_name": self.project_name,
"value": list(map(self.zonal_mean_index, indices, repeat(year))),
"area": self.roi.area().getInfo(), # m^2
"geojson": str(self.roi.getInfo()),
# to-do: coefficient
}
logging.info("data", data)
df = pd.DataFrame(data)
return df
@staticmethod
def _authenticate_ee(ee_service_account):
"""
Huggingface Spaces does not support secret files, therefore authenticate with an environment variable containing the JSON.
"""
logging.info("Authenticating to Google Earth Engine...")
credentials = ee.ServiceAccountCredentials(
ee_service_account, key_data=os.environ["ee_service_account"]
)
ee.Initialize(credentials)
logging.info("Authenticated to Google Earth Engine.")
def _create_dataframe(self, years, project_name):
dfs = []
logging.info(years)
indices = self._load_indices(INDICES_FILE)
for year in years:
logging.info(year)
indexgenerator.project_name = project_name
df = indexgenerator.generate_composite_index_df(year, list(indices.keys()))
dfs.append(df)
return pd.concat(dfs)
# h/t: https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/12
def _latlon_to_config(self, longitudes=None, latitudes=None):
"""Function documentation:\n
Basic framework adopted from Krichardson under the following thread:
https://community.plotly.com/t/dynamic-zoom-for-mapbox/32658/7
# NOTE:
# THIS IS A TEMPORARY SOLUTION UNTIL THE DASH TEAM IMPLEMENTS DYNAMIC ZOOM
# in their plotly-functions associated with mapbox, such as go.Densitymapbox() etc.
Returns the appropriate zoom-level for these plotly-mapbox-graphics along with
the center coordinate tuple of all provided coordinate tuples.
"""
# Check whether both latitudes and longitudes have been passed,
# or if the list lenghts don't match
if (latitudes is None or longitudes is None) or (
len(latitudes) != len(longitudes)
):
# Otherwise, return the default values of 0 zoom and the coordinate origin as center point
return 0, (0, 0)
# Get the boundary-box
b_box = {}
b_box["height"] = latitudes.max() - latitudes.min()
b_box["width"] = longitudes.max() - longitudes.min()
b_box["center"] = (np.mean(longitudes), np.mean(latitudes))
# get the area of the bounding box in order to calculate a zoom-level
area = b_box["height"] * b_box["width"]
# * 1D-linear interpolation with numpy:
# - Pass the area as the only x-value and not as a list, in order to return a scalar as well
# - The x-points "xp" should be in parts in comparable order of magnitude of the given area
# - The zpom-levels are adapted to the areas, i.e. start with the smallest area possible of 0
# which leads to the highest possible zoom value 20, and so forth decreasing with increasing areas
# as these variables are antiproportional
zoom = np.interp(
x=area,
xp=[0, 5**-10, 4**-10, 3**-10, 2**-10, 1**-10, 1**-5],
fp=[20, 15, 14, 13, 12, 7, 5],
)
# Finally, return the zoom level and the associated boundary-box center coordinates
return zoom, b_box["center"]
def show_project_map(self, project_name):
prepared_statement = dq.get_project_geometry(project_name)
features = json.loads(prepared_statement[0][0].replace("'", '"'))["features"]
geometry = features[0]["geometry"]
longitudes = np.array(geometry["coordinates"])[0, :, 0]
latitudes = np.array(geometry["coordinates"])[0, :, 1]
zoom, bbox_center = self._latlon_to_config(longitudes, latitudes)
fig = go.Figure(
go.Scattermapbox(
mode="markers",
lon=[bbox_center[0]],
lat=[bbox_center[1]],
marker={"size": 20, "color": ["cyan"]},
)
)
fig.update_layout(
mapbox={
"style": "stamen-terrain",
"center": {"lon": bbox_center[0], "lat": bbox_center[1]},
"zoom": zoom,
"layers": [
{
"source": {
"type": "FeatureCollection",
"features": [{"type": "Feature", "geometry": geometry}],
},
"type": "fill",
"below": "traces",
"color": "royalblue",
}
],
},
margin={"l": 0, "r": 0, "b": 0, "t": 0},
)
return fig
def calculate_biodiversity_score(self, start_year, end_year, project_name):
years = []
for year in range(start_year, end_year):
row_exists = dq.check_if_project_exists_for_year(project_name, year)
if not row_exists:
years.append(year)
if len(years) > 0:
df = self._create_dataframe(years, project_name)
# Write score table to `_temptable`
dq.write_score_to_temptable()
# Create `bioindicator` table IF NOT EXISTS.
dq.get_or_create_bioindicator_table()
# UPSERT project record
dq.upsert_project_record()
logging.info("upserted records into motherduck")
scores = dq.get_project_scores(project_name, start_year, end_year)
return scores
# Instantiate outside gradio app to avoid re-initializing GEE, which is slow
indexgenerator = IndexGenerator(
centroid=LOCATION,
roi_radius=ROI_RADIUS,
indices_file=INDICES_FILE,
)
with gr.Blocks() as demo:
print("start gradio app")
with gr.Column():
m1 = gr.Plot()
with gr.Row():
project_name = gr.Dropdown([], label="Project", value="Select project")
start_year = gr.Number(value=2017, label="Start Year", precision=0)
end_year = gr.Number(value=2022, label="End Year", precision=0)
with gr.Row():
view_btn = gr.Button(value="Show project map")
calc_btn = gr.Button(value="Calculate!")
# save_btn = gr.Button(value="Save")
results_df = gr.Dataframe(
headers=["Year", "Project Name", "Score"],
datatype=["number", "str", "number"],
label="Biodiversity scores by year",
)
calc_btn.click(
indexgenerator.calculate_biodiversity_score,
inputs=[start_year, end_year, project_name],
outputs=results_df,
)
view_btn.click(
fn=indexgenerator.show_project_map,
inputs=[project_name],
outputs=[m1],
)
def update_project_dropdown_list(url_params):
username = url_params.get("username", "default")
projects = dq.list_projects_by_author(author_id=username)
# to-do: filter projects based on user
return gr.Dropdown.update(choices=projects["name"].tolist())
# Get url params
url_params = gr.JSON({"username": "default"}, visible=False, label="URL Params")
# Gradio has a bug
# For dropdown to update by demo.load, dropdown value must be called downstream
b1 = gr.Button("Hidden button that fixes bug.", visible=False)
b1.click(lambda x: x, inputs=project_name, outputs=[])
# Update project dropdown list on page load
demo.load(
fn=update_project_dropdown_list,
inputs=[url_params],
outputs=[project_name],
_js=get_window_url_params,
queue=False,
)
demo.launch()
|