File size: 8,411 Bytes
03b1dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd77b7
 
 
 
03b1dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import json
import pandas as pd
from collections import defaultdict
import copy as cp
from urllib.request import urlopen
import re

# Constants
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}, 
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
OPENCOMPASS_README = (
    'https://raw.githubusercontent.com/open-compass/opencompass/main/README.md'
)
GITHUB_REPO = 'https://github.com/open-compass/opencompass'
GITHUB_RAW = 'https://raw.githubusercontent.com/open-compass/opencompass'
GITHUB_BLOB = 'https://github.com/open-compass/opencompass/blob'

# URL for the JSON data
DATA_URL = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.24-12.20241205.json"

# Markdown content
MAIN_LEADERBOARD_TITLE = "# CompassAcademic Leaderboard"
MAIN_LEADERBOARD_DESCRIPTION = """## Main Evaluation Results
The CompassAcademic currently focuses on the comprehensive reasoning abilities of LLMs.
- The datasets selected so far include General Knowledge Reasoning (MMLU-Pro/GPQA-Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Completion (LiveCodeBench, HumanEval), and Instruction Following (IFEval).
- Currently, the evaluation primarily targets chat models, with updates featuring the latest community models at irregular intervals. 
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)πŸ†.
"""


def fix_image_urls(content):
    """Fix image URLs in markdown content."""
    # Handle the specific logo.svg path
    content = content.replace(
        'docs/en/_static/image/logo.svg',
        'https://raw.githubusercontent.com/open-compass/opencompass/main/docs/en/_static/image/logo.svg',
    )

    # Replace other relative image paths with absolute GitHub URLs
    content = re.sub(
        r'!\[[^\]]*\]\((?!http)([^)]+)\)',
        lambda m: f'![{m.group(0)}](https://raw.githubusercontent.com/open-compass/opencompass/main/{m.group(1)})',
        content,
    )

    return content


MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']


def load_data():
    response = urlopen(DATA_URL)
    data = json.loads(response.read().decode('utf-8'))
    return data


def build_main_table(data):
    df = pd.DataFrame(data['globalData']['OverallTable'])

    # Add OpenSource column based on models data
    models_data = data['models']
    df['OpenSource'] = df['model'].apply(
        lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
    )

    columns = {
        'model': 'Model',
        'org': 'Organization',
        'num': 'Parameters',
        'OpenSource': 'OpenSource',
        'Average': 'Average Score',
        'BBH': 'BBH',
        'Math-500': 'Math-500',
        'AIME': 'AIME',
        'MMLU-Pro': 'MMLU-Pro',
        'LiveCodeBench': 'LiveCodeBench',
        'HumanEval': 'HumanEval',
        'GQPA-Diamond': 'GQPA-Diamond',
        'IFEval': 'IFEval',
    }
    df = df[list(columns.keys())].rename(columns=columns)
    return df


def filter_table(df, size_ranges, model_types):
    filtered_df = df.copy()

    # Filter by size
    if size_ranges:

        def get_size_in_B(param):
            if param == 'N/A':
                return None
            try:
                return float(param.replace('B', ''))
            except:
                return None

        filtered_df['size_in_B'] = filtered_df['Parameters'].apply(
            get_size_in_B
        )

        mask = pd.Series(False, index=filtered_df.index)
        for size_range in size_ranges:
            if size_range == '<10B':
                mask |= (filtered_df['size_in_B'] < 10) & (
                    filtered_df['size_in_B'].notna()
                )
            elif size_range == '10B-70B':
                mask |= (filtered_df['size_in_B'] >= 10) & (
                    filtered_df['size_in_B'] < 70
                )
            elif size_range == '>70B':
                mask |= filtered_df['size_in_B'] >= 70
            elif size_range == 'Unknown':
                mask |= filtered_df['size_in_B'].isna()

        filtered_df = filtered_df[mask]
        filtered_df.drop('size_in_B', axis=1, inplace=True)

    # Filter by model type
    if model_types:
        type_mask = pd.Series(False, index=filtered_df.index)
        for model_type in model_types:
            if model_type == 'API':
                type_mask |= filtered_df['OpenSource'] == 'No'
            elif model_type == 'OpenSource':
                type_mask |= filtered_df['OpenSource'] == 'Yes'
        filtered_df = filtered_df[type_mask]

    # η›΄ζŽ₯θΏ”ε›žθΏ‡ζ»€εŽηš„ DataFrame
    return filtered_df


def calculate_column_widths(df):
    """Dynamically calculate column widths based on content length."""
    column_widths = []

    for column in df.columns:
        # Get max length of column name and values
        header_length = len(str(column))
        max_content_length = df[column].astype(str).map(len).max()

        # Use the larger of header or content length
        # Multiply by average character width (approximately 8 pixels)
        # Add padding (20 pixels)
        # Increase the multiplier for header length to ensure it fits
        width = max(header_length * 10, max_content_length * 8) + 20

        # Set minimum width (200 pixels)
        width = max(160, width)

        # Set maximum width (400 pixels) to prevent extremely wide columns
        width = min(400, width)

        column_widths.append(width)

    return column_widths


def create_interface():
    data = load_data()
    df = build_main_table(data)

    with gr.Blocks() as demo:
        gr.Markdown(MAIN_LEADERBOARD_TITLE)

        with gr.Tabs() as tabs:
            with gr.TabItem("πŸ… Main Leaderboard", elem_id='main'):
                gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)

                with gr.Row():
                    with gr.Column():
                        size_filter = gr.CheckboxGroup(
                            choices=MODEL_SIZE,
                            value=MODEL_SIZE,
                            label='Model Size',
                            interactive=True,
                        )
                    with gr.Column():
                        type_filter = gr.CheckboxGroup(
                            choices=MODEL_TYPE,
                            value=MODEL_TYPE,
                            label='Model Type',
                            interactive=True,
                        )

                with gr.Column():
                    table = gr.DataFrame(
                        value=df.sort_values("Average Score", ascending=False),
                        interactive=False,
                        wrap=False,  # 禁用θ‡ͺ动捒葌
                        column_widths=calculate_column_widths(df),
                    )

                def update_table(size_ranges, model_types):
                    filtered_df = filter_table(df, size_ranges, model_types)
                    return filtered_df.sort_values(
                        "Average Score", ascending=False
                    )

                size_filter.change(
                    fn=update_table,
                    inputs=[size_filter, type_filter],
                    outputs=table,
                )

                type_filter.change(
                    fn=update_table,
                    inputs=[size_filter, type_filter],
                    outputs=table,
                )

            # with gr.TabItem("πŸ” About", elem_id='about'):
            #     readme_content = urlopen(OPENCOMPASS_README).read().decode()
            #     fixed_content = fix_image_urls(readme_content)
            #     gr.Markdown(fixed_content)

        with gr.Row():
            with gr.Accordion("Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    elem_id='citation-button',
                )

    return demo


if __name__ == '__main__':
    demo = create_interface()
    demo.launch(server_name='0.0.0.0')