File size: 9,554 Bytes
03b1dbc 4224b43 03b1dbc 4224b43 03b1dbc 003043b 3eb0235 003043b 3eb0235 4224b43 fb5b92b 4224b43 fb5b92b 4224b43 03b1dbc 4224b43 03b1dbc 4224b43 03b1dbc e2eea98 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 2262cad b06c3f3 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 03b1dbc 5fe7967 2262cad 5fe7967 003043b 5fe7967 003043b 5fe7967 03b1dbc 5fe7967 03b1dbc c5f2ca3 03b1dbc 5fe7967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen, URLError
import re
from datetime import datetime
# Constants
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
# 开发环境
# DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/research-rank/research-data.REALTIME."
# 生产环境
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
def find_latest_data_url():
"""Find the latest available data URL by trying different dates."""
from datetime import timedelta
today = datetime.now()
for i in range(365):
date = today - timedelta(days=i)
date_str = date.strftime("%Y%m%d")
url = f"{DATA_URL_BASE}{date_str}.json"
try:
urlopen(url)
return url, date_str
except URLError:
continue
return None, None
def get_latest_data():
"""Get latest data URL and update time"""
data_url, update_time = find_latest_data_url()
if not data_url:
raise Exception("Could not find valid data URL")
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
return data_url, formatted_update_time
def get_leaderboard_title(update_time):
return f"# CompassAcademic Leaderboard (Last Updated: {update_time})"
MAIN_LEADERBOARD_DESCRIPTION = """## Main Evaluation Results
The CompassAcademic currently focuses on the comprehensive reasoning abilities of LLMs.
- The datasets selected so far include General Knowledge Reasoning (MMLU-Pro/GPQA-Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Completion (LiveCodeBench, HumanEval), and Instruction Following (IFEval).
- Currently, the evaluation primarily targets chat models, with updates featuring the latest community models at irregular intervals.
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
"""
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']
def load_data(data_url):
response = urlopen(data_url)
data = json.loads(response.read().decode('utf-8'))
return data
def build_main_table(data):
df = pd.DataFrame(data['globalData']['OverallTable'])
models_data = data['models']
df['OpenSource'] = df['model'].apply(
lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
)
df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int)
columns = {
'Rank': 'Rank', 'model': 'Model', 'org': 'Organization', 'num': 'Parameters',
'OpenSource': 'OpenSource', 'Average': 'Average Score', 'BBH': 'BBH',
'Math-500': 'Math-500', 'AIME': 'AIME', 'MMLU-Pro': 'MMLU-Pro',
'LiveCodeBench': 'LiveCodeBench', 'HumanEval': 'HumanEval',
'GQPA-Diamond': 'GQPA-Diamond', 'IFEval': 'IFEval',
}
df = df[list(columns.keys())].rename(columns=columns)
return df
def filter_table(df, size_ranges, model_types):
filtered_df = df.copy()
if size_ranges:
def get_size_in_B(param):
if param == 'N/A':
return None
try:
return float(param.replace('B', ''))
except:
return None
filtered_df['size_in_B'] = filtered_df['Parameters'].apply(get_size_in_B)
mask = pd.Series(False, index=filtered_df.index)
for size_range in size_ranges:
if size_range == '<10B':
mask |= (filtered_df['size_in_B'] < 10) & (filtered_df['size_in_B'].notna())
elif size_range == '10B-70B':
mask |= (filtered_df['size_in_B'] >= 10) & (filtered_df['size_in_B'] < 70)
elif size_range == '>70B':
mask |= filtered_df['size_in_B'] >= 70
elif size_range == 'Unknown':
mask |= filtered_df['size_in_B'].isna()
filtered_df = filtered_df[mask]
filtered_df.drop('size_in_B', axis=1, inplace=True)
if model_types:
type_mask = pd.Series(False, index=filtered_df.index)
for model_type in model_types:
if model_type == 'API':
type_mask |= filtered_df['OpenSource'] == 'No'
elif model_type == 'OpenSource':
type_mask |= filtered_df['OpenSource'] == 'Yes'
filtered_df = filtered_df[type_mask]
return filtered_df
def calculate_column_widths(df):
column_widths = []
for column in df.columns:
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
width = max(header_length * 10, max_content_length * 8) + 20
width = max(160, min(400, width))
column_widths.append(width)
return column_widths
class DataState:
def __init__(self):
self.current_df = None
data_state = DataState()
def create_interface():
empty_df = pd.DataFrame(columns=[
'Rank', 'Model', 'Organization', 'Parameters', 'OpenSource',
'Average Score', 'BBH', 'Math-500', 'AIME', 'MMLU-Pro',
'LiveCodeBench', 'HumanEval', 'GQPA-Diamond', 'IFEval'
])
def load_initial_data():
try:
data_url, update_time = get_latest_data()
data = load_data(data_url)
new_df = build_main_table(data)
data_state.current_df = new_df
filtered_df = filter_table(new_df, MODEL_SIZE, MODEL_TYPE)
return get_leaderboard_title(update_time), filtered_df.sort_values("Average Score", ascending=False)
except Exception as e:
print(f"Error loading initial data: {e}")
return "# CompassAcademic Leaderboard (Error loading data)", empty_df
def refresh_data():
try:
data_url, update_time = get_latest_data()
data = load_data(data_url)
new_df = build_main_table(data)
data_state.current_df = new_df
filtered_df = filter_table(new_df, MODEL_SIZE, MODEL_TYPE)
return get_leaderboard_title(update_time), filtered_df.sort_values("Average Score", ascending=False)
except Exception as e:
print(f"Error refreshing data: {e}")
return None, None
def update_table(size_ranges, model_types):
if data_state.current_df is None:
return empty_df
filtered_df = filter_table(data_state.current_df, size_ranges, model_types)
return filtered_df.sort_values("Average Score", ascending=False)
initial_title, initial_data = load_initial_data()
with gr.Blocks() as demo:
title_comp = gr.Markdown(initial_title)
with gr.Tabs() as tabs:
with gr.TabItem("🏅 Main Leaderboard", elem_id='main'):
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Row():
with gr.Column():
size_filter = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True,
)
with gr.Column():
type_filter = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True,
)
with gr.Column():
table = gr.DataFrame(
value=initial_data,
interactive=False,
wrap=False,
column_widths=calculate_column_widths(initial_data),
)
refresh_button = gr.Button("Refresh Data")
def refresh_and_update():
title, data = refresh_data()
return title, data
refresh_button.click(
fn=refresh_and_update,
outputs=[title_comp, table],
)
size_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
type_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
lines=6, # 增加行数
max_lines=8, # 设置最大行数
show_copy_button=True # 添加复制按钮使其更方便使用
)
return demo
if __name__ == '__main__':
demo = create_interface()
demo.queue()
demo.launch(server_name='0.0.0.0') |