TracyMc's picture
upadte
e2eea98
raw
history blame
8.56 kB
import gradio as gr
import json
import pandas as pd
from collections import defaultdict
import copy as cp
from urllib.request import urlopen
import re
# Constants
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
},
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
OPENCOMPASS_README = (
'https://raw.githubusercontent.com/open-compass/opencompass/main/README.md'
)
GITHUB_REPO = 'https://github.com/open-compass/opencompass'
GITHUB_RAW = 'https://raw.githubusercontent.com/open-compass/opencompass'
GITHUB_BLOB = 'https://github.com/open-compass/opencompass/blob'
# URL for the JSON data
DATA_URL = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.24-12.20241205.json"
# Markdown content
MAIN_LEADERBOARD_TITLE = "# CompassAcademic Leaderboard"
MAIN_LEADERBOARD_DESCRIPTION = """## Main Evaluation Results
The CompassAcademic currently focuses on the comprehensive reasoning abilities of LLMs.
- The datasets selected so far include General Knowledge Reasoning (MMLU-Pro/GPQA-Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Completion (LiveCodeBench, HumanEval), and Instruction Following (IFEval).
- Currently, the evaluation primarily targets chat models, with updates featuring the latest community models at irregular intervals.
- Prompts and reproduction scripts can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)πŸ†.
"""
def fix_image_urls(content):
"""Fix image URLs in markdown content."""
# Handle the specific logo.svg path
content = content.replace(
'docs/en/_static/image/logo.svg',
'https://raw.githubusercontent.com/open-compass/opencompass/main/docs/en/_static/image/logo.svg',
)
# Replace other relative image paths with absolute GitHub URLs
content = re.sub(
r'!\[[^\]]*\]\((?!http)([^)]+)\)',
lambda m: f'![{m.group(0)}](https://raw.githubusercontent.com/open-compass/opencompass/main/{m.group(1)})',
content,
)
return content
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']
def load_data():
response = urlopen(DATA_URL)
data = json.loads(response.read().decode('utf-8'))
return data
def build_main_table(data):
df = pd.DataFrame(data['globalData']['OverallTable'])
# Add OpenSource column based on models data
models_data = data['models']
df['OpenSource'] = df['model'].apply(
lambda x: 'Yes' if models_data[x]['release'] == 'OpenSource' else 'No'
)
# Add Rank column based on Average Score
df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int)
columns = {
'Rank': 'Rank',
'model': 'Model',
'org': 'Organization',
'num': 'Parameters',
'OpenSource': 'OpenSource',
'Average': 'Average Score',
'BBH': 'BBH',
'Math-500': 'Math-500',
'AIME': 'AIME',
'MMLU-Pro': 'MMLU-Pro',
'LiveCodeBench': 'LiveCodeBench',
'HumanEval': 'HumanEval',
'GQPA-Diamond': 'GQPA-Diamond',
'IFEval': 'IFEval',
}
df = df[list(columns.keys())].rename(columns=columns)
return df
def filter_table(df, size_ranges, model_types):
filtered_df = df.copy()
# Filter by size
if size_ranges:
def get_size_in_B(param):
if param == 'N/A':
return None
try:
return float(param.replace('B', ''))
except:
return None
filtered_df['size_in_B'] = filtered_df['Parameters'].apply(
get_size_in_B
)
mask = pd.Series(False, index=filtered_df.index)
for size_range in size_ranges:
if size_range == '<10B':
mask |= (filtered_df['size_in_B'] < 10) & (
filtered_df['size_in_B'].notna()
)
elif size_range == '10B-70B':
mask |= (filtered_df['size_in_B'] >= 10) & (
filtered_df['size_in_B'] < 70
)
elif size_range == '>70B':
mask |= filtered_df['size_in_B'] >= 70
elif size_range == 'Unknown':
mask |= filtered_df['size_in_B'].isna()
filtered_df = filtered_df[mask]
filtered_df.drop('size_in_B', axis=1, inplace=True)
# Filter by model type
if model_types:
type_mask = pd.Series(False, index=filtered_df.index)
for model_type in model_types:
if model_type == 'API':
type_mask |= filtered_df['OpenSource'] == 'No'
elif model_type == 'OpenSource':
type_mask |= filtered_df['OpenSource'] == 'Yes'
filtered_df = filtered_df[type_mask]
# η›΄ζŽ₯θΏ”ε›žθΏ‡ζ»€εŽηš„ DataFrame
return filtered_df
def calculate_column_widths(df):
"""Dynamically calculate column widths based on content length."""
column_widths = []
for column in df.columns:
# Get max length of column name and values
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
# Use the larger of header or content length
# Multiply by average character width (approximately 8 pixels)
# Add padding (20 pixels)
# Increase the multiplier for header length to ensure it fits
width = max(header_length * 10, max_content_length * 8) + 20
# Set minimum width (200 pixels)
width = max(160, width)
# Set maximum width (400 pixels) to prevent extremely wide columns
width = min(400, width)
column_widths.append(width)
return column_widths
def create_interface():
data = load_data()
df = build_main_table(data)
with gr.Blocks() as demo:
gr.Markdown(MAIN_LEADERBOARD_TITLE)
with gr.Tabs() as tabs:
with gr.TabItem("πŸ… Main Leaderboard", elem_id='main'):
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Row():
with gr.Column():
size_filter = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True,
)
with gr.Column():
type_filter = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True,
)
with gr.Column():
table = gr.DataFrame(
value=df.sort_values("Average Score", ascending=False),
interactive=False,
wrap=False, # 禁用θ‡ͺ动捒葌
column_widths=calculate_column_widths(df),
)
def update_table(size_ranges, model_types):
filtered_df = filter_table(df, size_ranges, model_types)
return filtered_df.sort_values(
"Average Score", ascending=False
)
size_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
type_filter.change(
fn=update_table,
inputs=[size_filter, type_filter],
outputs=table,
)
# with gr.TabItem("πŸ” About", elem_id='about'):
# readme_content = urlopen(OPENCOMPASS_README).read().decode()
# fixed_content = fix_image_urls(readme_content)
# gr.Markdown(fixed_content)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id='citation-button',
)
return demo
if __name__ == '__main__':
demo = create_interface()
demo.launch(server_name='0.0.0.0')