File size: 21,544 Bytes
41e79e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142f54f
41e79e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142f54f
41e79e2
 
 
142f54f
 
41e79e2
 
 
142f54f
41e79e2
 
 
142f54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e79e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script

# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
    sys.path.append(current_dir)
if src_dir not in sys.path:
    sys.path.append(src_dir)

# Create message queue
task_queue = queue.Queue()
# Dictionary to store task status
task_status = {}
# List to store task history, max 200 tasks
task_history = []
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads
worker_threads = max(1, multiprocessing.cpu_count() // 2)  # Using half the available cores for better stability
# Flag for running background threads
running = True
# Mapping from task type to processing time
task_type_times = {}

def queue_processor():
    """Process tasks in the queue"""
    while running:
        try:
            task_id, input_data, request_time = task_queue.get(timeout=0.1)
            with lock:
                task_status[task_id]['status'] = 'processing'
                task_status[task_id]['start_time'] = time.time()
            
            if isinstance(input_data, list) and len(input_data) > 0:
                sample_task = input_data[0]
                language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
                task_size = len(input_data)
                task_complexity = _estimate_task_complexity(input_data)
                
                with lock:
                    task_status[task_id]['estimated_factors'] = {
                        'language': language,
                        'size': task_size,
                        'complexity': task_complexity
                    }
            
            result = evaluate(input_data)
            
            end_time = time.time()
            process_time = end_time - task_status[task_id]['start_time']
            
            with lock:
                task_status[task_id]['status'] = 'completed'
                task_status[task_id]['result'] = result
                task_status[task_id]['end_time'] = end_time
                task_status[task_id]['process_time'] = process_time
                
                if 'estimated_factors' in task_status[task_id]:
                    factors = task_status[task_id]['estimated_factors']
                    key = f"{factors['language']}_{factors['complexity']}"
                    
                    if key not in task_type_times:
                        task_type_times[key] = []
                    
                    task_type_times[key].append(process_time / factors['size'])
                    if len(task_type_times[key]) > 10:
                        task_type_times[key] = task_type_times[key][-10:]
                
                task_history.append({
                    'task_id': task_id,
                    'request_time': request_time,
                    'process_time': process_time,
                    'status': 'completed',
                    'factors': task_status[task_id].get('estimated_factors', {})
                })
                while len(task_history) > 200:
                    task_history.pop(0)
                    
            task_queue.task_done()
            
        except queue.Empty:
            continue
        except Exception as e:
            if 'task_id' in locals():
                with lock:
                    task_status[task_id]['status'] = 'error'
                    task_status[task_id]['error'] = str(e)
                    task_status[task_id]['end_time'] = time.time()
            task_queue.task_done()

def _estimate_task_complexity(tasks):
    """Estimate task complexity
    
    Returns: 'simple', 'medium', or 'complex'
    """
    total_code_length = 0
    count = 0
    
    for task in tasks:
        if isinstance(task, dict):
            prompt = task.get('prompt', '')
            tests = task.get('tests', '')
            completions = task.get('processed_completions', [])
            
            code_length = len(prompt) + len(tests)
            if completions:
                code_length += sum(len(comp) for comp in completions)
            
            total_code_length += code_length
            count += 1
    
    if count == 0:
        return 'medium'
    
    avg_length = total_code_length / count
    
    if avg_length < 1000:
        return 'simple'
    elif avg_length < 5000:
        return 'medium'
    else:
        return 'complex'

def evaluate(input_data):
    """Main function for code evaluation"""
    try:
        if not isinstance(input_data, list):
            return {"status": "Exception", "error": "Input must be a list"}
            
        results = []
        
        # Use a moderate number of workers for all language tests to ensure stability
        # This prevents resource contention regardless of language
        max_workers = max(1, min(multiprocessing.cpu_count() // 2, 4))
        
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
            for future in concurrent.futures.as_completed(future_to_item):
                item = future_to_item[future]
                try:
                    result = future.result()
                    results.append(result)
                except Exception as e:
                    item.update({"status": "Exception", "error": str(e)})
                    results.append(item)
        return results
            
    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_single_case(input_data):
    """Evaluate a single code case"""
    try:
        if not isinstance(input_data, dict):
            return {"status": "Exception", "error": "Input item must be a dictionary"}
            
        language = input_data.get('language')
        completions = input_data.get('processed_completions', [])

        if not completions:
            return {"status": "Exception", "error": "No code provided"}

        # Use a retry mechanism for all languages for better reliability
        max_retries = 2  # One retry for all languages
        
        status_list, stderr_list = [], []
        for comp in completions:
            code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
            
            # Try up to max_retries times for all test cases
            for attempt in range(max_retries):
                result = evaluate_code(code, language)
                
                # If success or last attempt, return/record the result
                if result["status"] == "OK":
                    break
                # For retries, briefly wait to allow resources to stabilize
                time.sleep(0.3)

            status_list.append(result["status"])
            stderr_list.append(result["stderr"])
        
        processed_completions = input_data.pop('processed_completions', [])
        completions = input_data.pop('completions', [])

        meta_data = [
            {
                'processed_completion': p_comp,
                'completion': comp,
                'status': status,
                'stderr': stderr
            }
            for p_comp, comp, status, stderr in zip(processed_completions, completions, status_list, stderr_list)
        ]

        input_data['meta_data'] = meta_data
        return input_data

    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_code(code, language):
    """Evaluate code in a specific language"""
    try:
        result = eval_string_script(language, code)
        return result

    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def synchronous_evaluate(input_data):
    """Synchronously evaluate code, compatible with original interface"""
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    queue_info = get_queue_status()
    waiting_tasks = queue_info['waiting_tasks']
    
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    with lock:
        task_status[task_id] = {
            'status': 'queued',
            'queued_time': request_time,
            'queue_position': task_queue.qsize() + 1,
            'synchronous': True,
            'estimated_factors': {
                'language': language,
                'size': task_size,
                'complexity': task_complexity
            },
            'estimated_time': estimated_total_time
        }
    
    task_queue.put((task_id, input_data, request_time))
    
    while True:
        with lock:
            if task_id in task_status:
                status = task_status[task_id]['status']
                if status == 'completed':
                    result = task_status[task_id]['result']
                    task_status.pop(task_id, None)
                    return result
                elif status == 'error':
                    error = task_status[task_id].get('error', 'Unknown error')
                    task_status.pop(task_id, None)
                    return {"status": "Exception", "error": error}
        
        time.sleep(0.1)

def _get_estimated_time_for_task(language, complexity):
    """Get estimated processing time for a specific task type"""
    key = f"{language}_{complexity}"
    
    if key in task_type_times and len(task_type_times[key]) > 0:
        return np.median(task_type_times[key])
    
    if complexity == 'simple':
        return 1.0
    elif complexity == 'medium':
        return 3.0
    else:  # complex
        return 8.0

def enqueue_task(input_data):
    """Add task to queue"""
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    with lock:
        task_status[task_id] = {
            'status': 'queued',
            'queued_time': request_time,
            'queue_position': task_queue.qsize() + 1,
            'estimated_factors': {
                'language': language,
                'size': task_size,
                'complexity': task_complexity
            },
            'estimated_time': estimated_total_time
        }
    
    queue_info = get_queue_status()
    est_wait = queue_info['estimated_wait']
    
    task_queue.put((task_id, input_data, request_time))
    
    return {
        'task_id': task_id,
        'status': 'queued',
        'queue_position': task_status[task_id]['queue_position'],
        'estimated_wait': est_wait,
        'estimated_processing': estimated_total_time
    }

def check_status(task_id):
    """Check task status"""
    with lock:
        if task_id not in task_status:
            return {'status': 'not_found'}
        
        status_info = task_status[task_id].copy()
        
        if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
            task_status.pop(task_id, None)
            
        return status_info

def get_queue_status():
    """Get queue status"""
    with lock:
        queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
        processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
        
        queue_size = task_queue.qsize()
        active_tasks = len(processing_tasks)
        waiting_tasks = len(queued_tasks)
        
        remaining_processing_time = 0
        for task in processing_tasks:
            if 'start_time' in task and 'estimated_time' in task:
                elapsed = time.time() - task['start_time']
                remaining = max(0, task['estimated_time'] - elapsed)
                remaining_processing_time += remaining
            else:
                remaining_processing_time += 2
        
        if active_tasks > 0:
            remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
        
        queued_processing_time = 0
        for task in queued_tasks:
            if 'estimated_time' in task:
                queued_processing_time += task['estimated_time']
            else:
                queued_processing_time += 5
        
        if worker_threads > 0 and queued_processing_time > 0:
            queued_processing_time = queued_processing_time / worker_threads
        
        estimated_wait = remaining_processing_time + queued_processing_time
        
        if task_history:
            prediction_ratios = []
            for task in task_history:
                if 'factors' in task and 'estimated_time' in task:
                    prediction_ratios.append(task['process_time'] / task['estimated_time'])
            
            if prediction_ratios:
                correction_factor = np.median(prediction_ratios)
                correction_factor = max(0.5, min(2.0, correction_factor))
                estimated_wait *= correction_factor
        
        estimated_wait = max(0.1, estimated_wait)
        if waiting_tasks == 0 and active_tasks == 0:
            estimated_wait = 0
            
        recent_tasks = task_history[-5:] if task_history else []
            
        return {
            'queue_size': queue_size,
            'active_tasks': active_tasks,
            'waiting_tasks': waiting_tasks,
            'worker_threads': worker_threads,
            'estimated_wait': estimated_wait,
            'recent_tasks': recent_tasks
        }

def format_time(seconds):
    """Format time into readable format"""
    if seconds < 60:
        return f"{seconds:.1f} seconds"
    elif seconds < 3600:
        minutes = int(seconds / 60)
        seconds = seconds % 60
        return f"{minutes}m {seconds:.1f}s"
    else:
        hours = int(seconds / 3600)
        minutes = int((seconds % 3600) / 60)
        return f"{hours}h {minutes}m"

def ui_get_queue_info():
    """Get queue info for UI"""
    queue_info = get_queue_status()
    
    tasks_html = ""
    for task in reversed(queue_info['recent_tasks']):
        tasks_html += f"""
        <tr>
            <td>{task['task_id'][:8]}...</td>
            <td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
            <td>{format_time(task['process_time'])}</td>
        </tr>
        """
    
    if not tasks_html:
        tasks_html = """
        <tr>
            <td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
        </tr>
        """
    
    return f"""
    <div class="dashboard">
        <div class="queue-info-card main-card">
            <h3 class="card-title">Queue Status Monitor</h3>
            <div class="queue-stats">
                <div class="stat-item">
                    <div class="stat-value">{queue_info['waiting_tasks']}</div>
                    <div class="stat-label">Waiting</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['active_tasks']}</div>
                    <div class="stat-label">Processing</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['worker_threads']}</div>
                    <div class="stat-label">Worker Threads</div>
                </div>
            </div>
            
            <div class="wait-time">
                <p><b>Current Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
                <p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
            </div>
        </div>
            
        <div class="queue-info-card history-card">
            <h3 class="card-title">Recently Processed Tasks</h3>
            <table class="recent-tasks">
                <thead>
                    <tr>
                        <th>Task ID</th>
                        <th>Request Time</th>
                        <th>Processing Time</th>
                    </tr>
                </thead>
                <tbody>
                    {tasks_html}
                </tbody>
            </table>
        </div>
    </div>
    """

def launch_workers():
    """Launch worker threads"""
    global running
    running = True
    
    for _ in range(worker_threads):
        worker = threading.Thread(target=queue_processor)
        worker.daemon = True
        worker.start()

# Custom CSS
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

.dashboard {
    display: flex;
    flex-direction: column;
    gap: 20px;
}

.card-title {
    color: #333;
    border-bottom: 2px solid #ddd;
    padding-bottom: 10px;
    margin-top: 0;
}

.status-card, .queue-info-card {
    background: #fff;
    border-radius: 12px;
    padding: 20px;
    margin: 10px 0;
    box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}

.main-card {
    border-top: 5px solid #4285f4;
}

.history-card {
    border-top: 5px solid #34a853;
}

.status-card.success {
    background: #e7f5e7;
    border-left: 5px solid #28a745;
}

.status-card.error {
    background: #f8d7da;
    border-left: 5px solid #dc3545;
}

.error-message {
    color: #dc3545;
    font-weight: bold;
    padding: 10px;
    background: #f8d7da;
    border-radius: 5px;
}

.notice {
    color: #0c5460;
    background-color: #d1ecf1;
    padding: 10px;
    border-radius: 5px;
}

.queue-stats {
    display: flex;
    justify-content: space-around;
    margin: 20px 0;
}

.stat-item {
    text-align: center;
    padding: 15px;
    background: #f8f9fa;
    border-radius: 10px;
    min-width: 120px;
    transition: transform 0.3s ease;
}

.stat-item:hover {
    transform: translateY(-5px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}

.stat-value {
    font-size: 32px;
    font-weight: bold;
    color: #4285f4;
    margin-bottom: 5px;
}

.stat-label {
    color: #5f6368;
    font-size: 16px;
}

.wait-time {
    text-align: center;
    margin: 20px 0;
    padding: 15px;
    background: #f1f3f4;
    border-radius: 8px;
    font-size: 18px;
}

.last-update {
    color: #80868b;
    margin-top: 10px;
    margin-bottom: 0;
}

.recent-tasks {
    width: 100%;
    border-collapse: collapse;
    margin-top: 15px;
    background: white;
    box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}

.recent-tasks th, .recent-tasks td {
    border: 1px solid #e0e0e0;
    padding: 12px 15px;
    text-align: center;
}

.recent-tasks th {
    background-color: #f1f3f4;
    color: #202124;
    font-weight: 500;
}

.recent-tasks tbody tr:hover {
    background-color: #f8f9fa;
}

.tabs {
    margin-top: 20px;
}

button.primary {
    background-color: #4285f4;
    color: white;
    padding: 10px 20px;
    border: none;
    border-radius: 4px;
    cursor: pointer;
    font-size: 16px;
    font-weight: 500;
    transition: background-color 0.3s;
}

button.primary:hover {
    background-color: #3367d6;
}
"""

# Initialize and launch worker threads
launch_workers()

# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# Code Evaluation Service")
    gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
    
    with gr.Row():
        with gr.Column(scale=3):
            # Queue status info card
            queue_info_html = gr.HTML()
            refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
    
    # Hidden API interface components
    with gr.Row(visible=False):
        api_input = gr.JSON()
        api_output = gr.JSON()
    
    # Define update function
    def update_queue_info():
        return ui_get_queue_info()
    
    # Update queue info periodically
    demo.load(update_queue_info, None, queue_info_html, every=3)
    
    # Refresh button event
    refresh_queue_btn.click(update_queue_info, None, queue_info_html)
    
    # Add evaluation endpoint compatible with original interface
    demo.queue()
    evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")

if __name__ == "__main__":
    try:
        demo.launch()
    finally:
        # Stop worker threads
        running = False