Spaces:
Running
Running
File size: 21,544 Bytes
41e79e2 142f54f 41e79e2 142f54f 41e79e2 142f54f 41e79e2 142f54f 41e79e2 142f54f 41e79e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script
# Add current directory and src directory to module search path
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
# Create message queue
task_queue = queue.Queue()
# Dictionary to store task status
task_status = {}
# List to store task history, max 200 tasks
task_history = []
# Lock for shared resources
lock = threading.Lock()
# Number of worker threads
worker_threads = max(1, multiprocessing.cpu_count() // 2) # Using half the available cores for better stability
# Flag for running background threads
running = True
# Mapping from task type to processing time
task_type_times = {}
def queue_processor():
"""Process tasks in the queue"""
while running:
try:
task_id, input_data, request_time = task_queue.get(timeout=0.1)
with lock:
task_status[task_id]['status'] = 'processing'
task_status[task_id]['start_time'] = time.time()
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
with lock:
task_status[task_id]['estimated_factors'] = {
'language': language,
'size': task_size,
'complexity': task_complexity
}
result = evaluate(input_data)
end_time = time.time()
process_time = end_time - task_status[task_id]['start_time']
with lock:
task_status[task_id]['status'] = 'completed'
task_status[task_id]['result'] = result
task_status[task_id]['end_time'] = end_time
task_status[task_id]['process_time'] = process_time
if 'estimated_factors' in task_status[task_id]:
factors = task_status[task_id]['estimated_factors']
key = f"{factors['language']}_{factors['complexity']}"
if key not in task_type_times:
task_type_times[key] = []
task_type_times[key].append(process_time / factors['size'])
if len(task_type_times[key]) > 10:
task_type_times[key] = task_type_times[key][-10:]
task_history.append({
'task_id': task_id,
'request_time': request_time,
'process_time': process_time,
'status': 'completed',
'factors': task_status[task_id].get('estimated_factors', {})
})
while len(task_history) > 200:
task_history.pop(0)
task_queue.task_done()
except queue.Empty:
continue
except Exception as e:
if 'task_id' in locals():
with lock:
task_status[task_id]['status'] = 'error'
task_status[task_id]['error'] = str(e)
task_status[task_id]['end_time'] = time.time()
task_queue.task_done()
def _estimate_task_complexity(tasks):
"""Estimate task complexity
Returns: 'simple', 'medium', or 'complex'
"""
total_code_length = 0
count = 0
for task in tasks:
if isinstance(task, dict):
prompt = task.get('prompt', '')
tests = task.get('tests', '')
completions = task.get('processed_completions', [])
code_length = len(prompt) + len(tests)
if completions:
code_length += sum(len(comp) for comp in completions)
total_code_length += code_length
count += 1
if count == 0:
return 'medium'
avg_length = total_code_length / count
if avg_length < 1000:
return 'simple'
elif avg_length < 5000:
return 'medium'
else:
return 'complex'
def evaluate(input_data):
"""Main function for code evaluation"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
# Use a moderate number of workers for all language tests to ensure stability
# This prevents resource contention regardless of language
max_workers = max(1, min(multiprocessing.cpu_count() // 2, 4))
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
results.append(result)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""Evaluate a single code case"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
# Use a retry mechanism for all languages for better reliability
max_retries = 2 # One retry for all languages
status_list, stderr_list = [], []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
# Try up to max_retries times for all test cases
for attempt in range(max_retries):
result = evaluate_code(code, language)
# If success or last attempt, return/record the result
if result["status"] == "OK":
break
# For retries, briefly wait to allow resources to stabilize
time.sleep(0.3)
status_list.append(result["status"])
stderr_list.append(result["stderr"])
processed_completions = input_data.pop('processed_completions', [])
completions = input_data.pop('completions', [])
meta_data = [
{
'processed_completion': p_comp,
'completion': comp,
'status': status,
'stderr': stderr
}
for p_comp, comp, status, stderr in zip(processed_completions, completions, status_list, stderr_list)
]
input_data['meta_data'] = meta_data
return input_data
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""Evaluate code in a specific language"""
try:
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
def synchronous_evaluate(input_data):
"""Synchronously evaluate code, compatible with original interface"""
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
queue_info = get_queue_status()
waiting_tasks = queue_info['waiting_tasks']
task_id = str(uuid.uuid4())
request_time = time.time()
with lock:
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': task_queue.qsize() + 1,
'synchronous': True,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
task_queue.put((task_id, input_data, request_time))
while True:
with lock:
if task_id in task_status:
status = task_status[task_id]['status']
if status == 'completed':
result = task_status[task_id]['result']
task_status.pop(task_id, None)
return result
elif status == 'error':
error = task_status[task_id].get('error', 'Unknown error')
task_status.pop(task_id, None)
return {"status": "Exception", "error": error}
time.sleep(0.1)
def _get_estimated_time_for_task(language, complexity):
"""Get estimated processing time for a specific task type"""
key = f"{language}_{complexity}"
if key in task_type_times and len(task_type_times[key]) > 0:
return np.median(task_type_times[key])
if complexity == 'simple':
return 1.0
elif complexity == 'medium':
return 3.0
else: # complex
return 8.0
def enqueue_task(input_data):
"""Add task to queue"""
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
task_id = str(uuid.uuid4())
request_time = time.time()
with lock:
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': task_queue.qsize() + 1,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
queue_info = get_queue_status()
est_wait = queue_info['estimated_wait']
task_queue.put((task_id, input_data, request_time))
return {
'task_id': task_id,
'status': 'queued',
'queue_position': task_status[task_id]['queue_position'],
'estimated_wait': est_wait,
'estimated_processing': estimated_total_time
}
def check_status(task_id):
"""Check task status"""
with lock:
if task_id not in task_status:
return {'status': 'not_found'}
status_info = task_status[task_id].copy()
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
task_status.pop(task_id, None)
return status_info
def get_queue_status():
"""Get queue status"""
with lock:
queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
queue_size = task_queue.qsize()
active_tasks = len(processing_tasks)
waiting_tasks = len(queued_tasks)
remaining_processing_time = 0
for task in processing_tasks:
if 'start_time' in task and 'estimated_time' in task:
elapsed = time.time() - task['start_time']
remaining = max(0, task['estimated_time'] - elapsed)
remaining_processing_time += remaining
else:
remaining_processing_time += 2
if active_tasks > 0:
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
queued_processing_time = 0
for task in queued_tasks:
if 'estimated_time' in task:
queued_processing_time += task['estimated_time']
else:
queued_processing_time += 5
if worker_threads > 0 and queued_processing_time > 0:
queued_processing_time = queued_processing_time / worker_threads
estimated_wait = remaining_processing_time + queued_processing_time
if task_history:
prediction_ratios = []
for task in task_history:
if 'factors' in task and 'estimated_time' in task:
prediction_ratios.append(task['process_time'] / task['estimated_time'])
if prediction_ratios:
correction_factor = np.median(prediction_ratios)
correction_factor = max(0.5, min(2.0, correction_factor))
estimated_wait *= correction_factor
estimated_wait = max(0.1, estimated_wait)
if waiting_tasks == 0 and active_tasks == 0:
estimated_wait = 0
recent_tasks = task_history[-5:] if task_history else []
return {
'queue_size': queue_size,
'active_tasks': active_tasks,
'waiting_tasks': waiting_tasks,
'worker_threads': worker_threads,
'estimated_wait': estimated_wait,
'recent_tasks': recent_tasks
}
def format_time(seconds):
"""Format time into readable format"""
if seconds < 60:
return f"{seconds:.1f} seconds"
elif seconds < 3600:
minutes = int(seconds / 60)
seconds = seconds % 60
return f"{minutes}m {seconds:.1f}s"
else:
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
return f"{hours}h {minutes}m"
def ui_get_queue_info():
"""Get queue info for UI"""
queue_info = get_queue_status()
tasks_html = ""
for task in reversed(queue_info['recent_tasks']):
tasks_html += f"""
<tr>
<td>{task['task_id'][:8]}...</td>
<td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
<td>{format_time(task['process_time'])}</td>
</tr>
"""
if not tasks_html:
tasks_html = """
<tr>
<td colspan="3" style="text-align: center; padding: 20px;">No historical tasks</td>
</tr>
"""
return f"""
<div class="dashboard">
<div class="queue-info-card main-card">
<h3 class="card-title">Queue Status Monitor</h3>
<div class="queue-stats">
<div class="stat-item">
<div class="stat-value">{queue_info['waiting_tasks']}</div>
<div class="stat-label">Waiting</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['active_tasks']}</div>
<div class="stat-label">Processing</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['worker_threads']}</div>
<div class="stat-label">Worker Threads</div>
</div>
</div>
<div class="wait-time">
<p><b>Current Estimated Wait Time:</b> {format_time(queue_info['estimated_wait'])}</p>
<p class="last-update"><small>Last update: {datetime.now().strftime('%H:%M:%S')}</small></p>
</div>
</div>
<div class="queue-info-card history-card">
<h3 class="card-title">Recently Processed Tasks</h3>
<table class="recent-tasks">
<thead>
<tr>
<th>Task ID</th>
<th>Request Time</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
{tasks_html}
</tbody>
</table>
</div>
</div>
"""
def launch_workers():
"""Launch worker threads"""
global running
running = True
for _ in range(worker_threads):
worker = threading.Thread(target=queue_processor)
worker.daemon = True
worker.start()
# Custom CSS
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.dashboard {
display: flex;
flex-direction: column;
gap: 20px;
}
.card-title {
color: #333;
border-bottom: 2px solid #ddd;
padding-bottom: 10px;
margin-top: 0;
}
.status-card, .queue-info-card {
background: #fff;
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}
.main-card {
border-top: 5px solid #4285f4;
}
.history-card {
border-top: 5px solid #34a853;
}
.status-card.success {
background: #e7f5e7;
border-left: 5px solid #28a745;
}
.status-card.error {
background: #f8d7da;
border-left: 5px solid #dc3545;
}
.error-message {
color: #dc3545;
font-weight: bold;
padding: 10px;
background: #f8d7da;
border-radius: 5px;
}
.notice {
color: #0c5460;
background-color: #d1ecf1;
padding: 10px;
border-radius: 5px;
}
.queue-stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
}
.stat-item {
text-align: center;
padding: 15px;
background: #f8f9fa;
border-radius: 10px;
min-width: 120px;
transition: transform 0.3s ease;
}
.stat-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.stat-value {
font-size: 32px;
font-weight: bold;
color: #4285f4;
margin-bottom: 5px;
}
.stat-label {
color: #5f6368;
font-size: 16px;
}
.wait-time {
text-align: center;
margin: 20px 0;
padding: 15px;
background: #f1f3f4;
border-radius: 8px;
font-size: 18px;
}
.last-update {
color: #80868b;
margin-top: 10px;
margin-bottom: 0;
}
.recent-tasks {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
background: white;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.recent-tasks th, .recent-tasks td {
border: 1px solid #e0e0e0;
padding: 12px 15px;
text-align: center;
}
.recent-tasks th {
background-color: #f1f3f4;
color: #202124;
font-weight: 500;
}
.recent-tasks tbody tr:hover {
background-color: #f8f9fa;
}
.tabs {
margin-top: 20px;
}
button.primary {
background-color: #4285f4;
color: white;
padding: 10px 20px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-weight: 500;
transition: background-color 0.3s;
}
button.primary:hover {
background-color: #3367d6;
}
"""
# Initialize and launch worker threads
launch_workers()
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Code Evaluation Service")
gr.Markdown("Code evaluation service supporting multiple programming languages, using queue mechanism to process requests")
with gr.Row():
with gr.Column(scale=3):
# Queue status info card
queue_info_html = gr.HTML()
refresh_queue_btn = gr.Button("Refresh Queue Status", variant="primary")
# Hidden API interface components
with gr.Row(visible=False):
api_input = gr.JSON()
api_output = gr.JSON()
# Define update function
def update_queue_info():
return ui_get_queue_info()
# Update queue info periodically
demo.load(update_queue_info, None, queue_info_html, every=3)
# Refresh button event
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
# Add evaluation endpoint compatible with original interface
demo.queue()
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")
if __name__ == "__main__":
try:
demo.launch()
finally:
# Stop worker threads
running = False |