Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Opendatalab. All rights reserved. | |
import base64 | |
import os | |
import json | |
import re | |
import time | |
import zipfile | |
from loguru import logger | |
from pathlib import Path | |
os.system('pip uninstall -y mineru') | |
os.system('pip install git+https://github.com/myhloli/Magic-PDF.git@dev') | |
# os.system('pip install sglang[all]==0.4.8') | |
os.system('mineru-models-download -s huggingface -m all') | |
try: | |
with open('/home/user/mineru.json', 'r+') as file: | |
config = json.load(file) | |
delimiters = { | |
'display': {'left': '\\[', 'right': '\\]'}, | |
'inline': {'left': '\\(', 'right': '\\)'} | |
} | |
config['latex-delimiter-config'] = delimiters | |
if os.getenv('apikey'): | |
config['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey') | |
config['llm-aided-config']['title_aided']['enable'] = True | |
file.seek(0) # 将文件指针移回文件开始位置 | |
file.truncate() # 截断文件,清除原有内容 | |
json.dump(config, file, indent=4) # 写入新内容 | |
except Exception as e: | |
logger.exception(e) | |
from gradio_pdf import PDF | |
import gradio as gr | |
from mineru.cli.common import prepare_env, read_fn, aio_do_parse | |
from mineru.utils.hash_utils import str_sha256 | |
os.environ['MINERU_MODEL_SOURCE'] = 'local' | |
async def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, formula_enable, table_enable, language, backend, url): | |
os.makedirs(output_dir, exist_ok=True) | |
try: | |
file_name = f'{safe_stem(Path(doc_path).stem)}_{time.strftime("%y%m%d_%H%M%S")}' | |
pdf_data = read_fn(doc_path) | |
if is_ocr: | |
parse_method = 'ocr' | |
else: | |
parse_method = 'auto' | |
if backend.startswith("vlm"): | |
parse_method = "vlm" | |
local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) | |
await aio_do_parse( | |
output_dir=output_dir, | |
pdf_file_names=[file_name], | |
pdf_bytes_list=[pdf_data], | |
p_lang_list=[language], | |
parse_method=parse_method, | |
end_page_id=end_page_id, | |
p_formula_enable=formula_enable, | |
p_table_enable=table_enable, | |
backend=backend, | |
server_url=url, | |
) | |
return local_md_dir, file_name | |
except Exception as e: | |
logger.exception(e) | |
def compress_directory_to_zip(directory_path, output_zip_path): | |
""" | |
压缩指定目录到一个 ZIP 文件。 | |
:param directory_path: 要压缩的目录路径 | |
:param output_zip_path: 输出的 ZIP 文件路径 | |
""" | |
try: | |
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
# 遍历目录中的所有文件和子目录 | |
for root, dirs, files in os.walk(directory_path): | |
for file in files: | |
# 构建完整的文件路径 | |
file_path = os.path.join(root, file) | |
# 计算相对路径 | |
arcname = os.path.relpath(file_path, directory_path) | |
# 添加文件到 ZIP 文件 | |
zipf.write(file_path, arcname) | |
return 0 | |
except Exception as e: | |
logger.exception(e) | |
return -1 | |
def image_to_base64(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def replace_image_with_base64(markdown_text, image_dir_path): | |
# 匹配Markdown中的图片标签 | |
pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' | |
# 替换图片链接 | |
def replace(match): | |
relative_path = match.group(1) | |
full_path = os.path.join(image_dir_path, relative_path) | |
base64_image = image_to_base64(full_path) | |
return f"" | |
# 应用替换 | |
return re.sub(pattern, replace, markdown_text) | |
async def to_markdown(file_path, end_pages=10, is_ocr=False, formula_enable=True, table_enable=True, language="ch", backend="pipeline", url=None): | |
file_path = to_pdf(file_path) | |
# 获取识别的md文件以及压缩包文件路径 | |
local_md_dir, file_name = await parse_pdf(file_path, './output', end_pages - 1, is_ocr, formula_enable, table_enable, language, backend, url) | |
archive_zip_path = os.path.join('./output', str_sha256(local_md_dir) + '.zip') | |
zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) | |
if zip_archive_success == 0: | |
logger.info('压缩成功') | |
else: | |
logger.error('压缩失败') | |
md_path = os.path.join(local_md_dir, file_name + '.md') | |
with open(md_path, 'r', encoding='utf-8') as f: | |
txt_content = f.read() | |
md_content = replace_image_with_base64(txt_content, local_md_dir) | |
# 返回转换后的PDF路径 | |
new_pdf_path = os.path.join(local_md_dir, file_name + '_layout.pdf') | |
return md_content, txt_content, archive_zip_path, new_pdf_path | |
latex_delimiters = [ | |
{'left': '$$', 'right': '$$', 'display': True}, | |
{'left': '$', 'right': '$', 'display': False}, | |
{'left': '\\(', 'right': '\\)', 'display': False}, | |
{'left': '\\[', 'right': '\\]', 'display': True}, | |
] | |
with open("header.html", "r") as file: | |
header = file.read() | |
latin_lang = [ | |
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', | |
'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl', | |
'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv', | |
'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german' | |
] | |
arabic_lang = ['ar', 'fa', 'ug', 'ur'] | |
cyrillic_lang = [ | |
'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava', | |
'dar', 'inh', 'che', 'lbe', 'lez', 'tab' | |
] | |
devanagari_lang = [ | |
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', | |
'sa', 'bgc' | |
] | |
other_lang = ['ch', 'ch_server', 'ch_lite', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka'] | |
add_lang = ['latin', 'arabic', 'cyrillic', 'devanagari'] | |
# all_lang = ['', 'auto'] | |
all_lang = [] | |
# all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang]) | |
all_lang.extend([*other_lang, *add_lang]) | |
def safe_stem(file_path): | |
stem = Path(file_path).stem | |
# 只保留字母、数字、下划线和点,其他字符替换为下划线 | |
return re.sub(r'[^\w.]', '_', stem) | |
def to_pdf(file_path): | |
if file_path is None: | |
return None | |
pdf_bytes = read_fn(file_path) | |
# unique_filename = f'{uuid.uuid4()}.pdf' | |
unique_filename = f'{safe_stem(file_path)}.pdf' | |
# 构建完整的文件路径 | |
tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) | |
# 将字节数据写入文件 | |
with open(tmp_file_path, 'wb') as tmp_pdf_file: | |
tmp_pdf_file.write(pdf_bytes) | |
return tmp_file_path | |
def main(): | |
example_enable = True | |
try: | |
print("预初始化SgLang引擎...") | |
from mineru.backend.vlm.vlm_analyze import ModelSingleton | |
modelsingleton = ModelSingleton() | |
predictor = modelsingleton.get_model( | |
"sglang-engine", | |
None, | |
'http://localhost:30000', | |
mem_fraction_static=0.5, | |
enable_torch_compile=True, | |
) | |
print("SgLang引擎初始化完成") | |
except Exception as e: | |
logger.exception(e) | |
with gr.Blocks() as demo: | |
gr.HTML(header) | |
with gr.Row(): | |
with gr.Column(variant='panel', scale=5): | |
with gr.Row(): | |
file = gr.File(label='Please upload a PDF or image', file_types=['.pdf', '.png', '.jpeg', '.jpg']) | |
with gr.Row(): | |
max_pages = gr.Slider(1, 20, 10, step=1, label='Max convert pages') | |
with gr.Row(): | |
backend = gr.Dropdown(["pipeline", "vlm-sglang-engine"], label="Backend", value="vlm-sglang-engine") | |
with gr.Row(visible=False) as ocr_options: | |
language = gr.Dropdown(all_lang, label='Language', value='ch') | |
with gr.Row(visible=False) as client_options: | |
url = gr.Textbox(label='Server URL', value='http://localhost:30000', placeholder='http://localhost:30000') | |
with gr.Row(visible=False) as pipeline_options: | |
is_ocr = gr.Checkbox(label='Force enable OCR', value=False) | |
formula_enable = gr.Checkbox(label='Enable formula recognition', value=True) | |
table_enable = gr.Checkbox(label='Enable table recognition(test)', value=True) | |
with gr.Row(): | |
change_bu = gr.Button('Convert') | |
clear_bu = gr.ClearButton(value='Clear') | |
pdf_show = PDF(label='PDF preview', interactive=False, visible=True, height=800) | |
if example_enable: | |
example_root = os.path.join(os.path.dirname(__file__), 'examples') | |
if os.path.exists(example_root): | |
with gr.Accordion('Examples:'): | |
gr.Examples( | |
examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if | |
_.endswith('pdf')], | |
inputs=file | |
) | |
with gr.Column(variant='panel', scale=5): | |
output_file = gr.File(label='convert result', interactive=False) | |
with gr.Tabs(): | |
with gr.Tab('Markdown rendering'): | |
md = gr.Markdown(label='Markdown rendering', height=1100, show_copy_button=True, | |
latex_delimiters=latex_delimiters, | |
line_breaks=True) | |
with gr.Tab('Markdown text'): | |
md_text = gr.TextArea(lines=45, show_copy_button=True) | |
# 更新界面函数 | |
def update_interface(backend_choice): | |
if backend_choice in ["vlm-transformers", "vlm-sglang-engine"]: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif backend_choice in ["vlm-sglang-client"]: # pipeline | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
elif backend_choice in ["pipeline"]: | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
pass | |
# 添加事件处理 | |
backend.change( | |
fn=update_interface, | |
inputs=[backend], | |
outputs=[client_options, ocr_options, pipeline_options], | |
api_name=False | |
) | |
file.change(fn=to_pdf, inputs=file, outputs=pdf_show, api_name=False) | |
change_bu.click(fn=to_markdown, inputs=[file, max_pages, is_ocr, formula_enable, table_enable, language, backend, url], | |
outputs=[md, md_text, output_file, pdf_show], api_name=False) | |
clear_bu.add([file, md, pdf_show, md_text, output_file, is_ocr]) | |
demo.launch(ssr_mode=True) | |
if __name__ == '__main__': | |
main() | |