Spaces:
Runtime error
Runtime error
File size: 70,774 Bytes
c3be39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
import copy
import functools
import warnings
from dataclasses import dataclass
from typing import (
Any,
cast,
Dict,
Iterable,
Iterator,
List,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.fsdp._common_utils import (
_apply_to_modules,
_FSDPState,
_get_module_fsdp_state_if_fully_sharded_module,
_get_param_to_fqns,
_module_handles,
clean_tensor_name,
)
from torch.distributed.fsdp._fsdp_extensions import _ext_chunk_tensor
from torch.distributed.fsdp._runtime_utils import _clear_grads_if_needed, _lazy_init
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.api import ShardingStrategy
from torch.distributed.fsdp.flat_param import FlatParameter, FlatParamHandle
@dataclass
class FSDPParamInfo:
state: _FSDPState
flat_param: FlatParameter
param_indices: Dict[str, int]
def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
keys = sorted(dictionary.keys())
for k in keys:
yield k, dictionary[k]
class _ConsolidatedOptimState:
"""
This holds the consolidated optimizer state on the target rank. Positive-
dimension tensor state is communicated across ranks, while zero-dimension
tensor state and non-tensor state is taken directly from the target rank.
PyTorch version 1.12 moved to using zero-dimension tensors for scalar
values, but user implemented optimizers may still use float (i.e. a
non-tensor). Thus, we support both and handle them identically.
Attributes:
tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
tensor state name to the unsharded flattened tensor representing
the state.
zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
dimension tensor state name to its value.
non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
name to its value.
"""
tensor_state: Dict[str, torch.Tensor] = {}
zero_dim_tensor_state: Dict[str, torch.Tensor] = {}
non_tensor_state: Dict[str, Any] = {}
class _PosDimTensorInfo(NamedTuple):
"""
Meatadata for positive-dimension tensors used internally for
:meth:`scatter_full_optim_state_dict`.
Attributes:
shape (torch.Size): Sharded tensor shape (which is equal to the
unsharded tensor shape if the tensor is optimizer state for a
non-FSDP parameter and is hence not sharded).
dtype (torch.dtype): Data type of the tensor.
"""
shape: torch.Size
dtype: torch.dtype
class _OptimStateKey(NamedTuple):
"""
This represents an optimizer state key that may be used commonly across
ranks. It is based on the unflattened parameter names rather than parameter
IDs to make it indepenendent of each rank's own optimizer construction.
"""
unflat_param_names: Tuple[str, ...]
is_fsdp_managed: bool
def _unflatten_optim_state(
fsdp_param_info: FSDPParamInfo,
flat_param_state: Dict[str, Any],
to_save: bool,
shard_state: bool,
) -> List[Dict[str, Any]]:
"""
Unflattens the optimizer state, consisting of the "state" part and the
"param_groups" part. Unflattening the "state" part involves consolidating
the state on the target rank and remapping from flattened to unflattened
parameter IDs, and the "param_groups" part only involves remapping from
flattened to unflattened parameter IDs.
Args:
fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
parameter.
flat_param_state (Dict[str, Any]): Entry for the flattened parameter
in the "state" part of the optimizer state dict.
to_save (bool): Whether to save the state on this rank.
Returns:
List[Dict[str, Any]]: A :class:`list` holding the entries in the
"state" part of the optimizer state dict corresponding to the
unflattened parameters comprising the flattened parameter if on the
target rank or an empty :class:`list` otherwise. The final optimizer
state dict will need to map these entries using the proper unflattened
parameter IDs.
"""
assert (
not shard_state or to_save
), "If ``shard_state`` is True, ``to_save`` has to be True."
consolidated_state = _communicate_optim_state(
fsdp_param_info,
flat_param_state,
)
if to_save:
unflat_param_state = _unflatten_communicated_optim_state(
fsdp_param_info,
consolidated_state,
shard_state,
)
for optim_state in unflat_param_state:
for key in list(optim_state.keys()):
state = optim_state[key]
if isinstance(state, torch.Tensor):
optim_state[key] = state.cpu()
return unflat_param_state
else:
return []
def _is_zero_dim_tensor(x: Any) -> bool:
return torch.is_tensor(x) and x.dim() == 0
def _communicate_optim_state(
fsdp_param_info: FSDPParamInfo,
flat_param_state: Dict[str, Any],
) -> _ConsolidatedOptimState:
"""
Communicates the optimizer state for a flattened parameter across ranks.
All ranks will hold the entire non-sharded optimizer state on GPU.
If ``N`` is the number of tensor optimizer states in the optimizer state
dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
otherwise (where the plus 1 comes from all-gathering the padding per rank).
Args:
fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
parameter.
flat_param_state (Dict[str, Any]): The entry in the "state" part of the
optimizer state dict corresponding to the flattened parameter.
Returns:
ConsolidatedOptimState: Consolidated optimizer state for the target
flattened parameter.
"""
fsdp_state = fsdp_param_info.state
flat_param = fsdp_param_info.flat_param
state = _ConsolidatedOptimState()
tensor_state, zero_dim_tensor_state, non_tensor_state = (
state.tensor_state,
state.zero_dim_tensor_state,
state.non_tensor_state,
)
for state_name, value in sorted_items(flat_param_state):
# Positive-dimension tensor state: communicate across ranks
if torch.is_tensor(value) and value.dim() > 0:
# If the parameter is not sharded, then neither is the
# positive-dimension tensor state, so no need to communicate it --
# we take the target rank's value
if (
fsdp_state.world_size == 1
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
):
tensor_state[state_name] = value
continue
if not value.is_cuda:
value = value.to(fsdp_state.compute_device)
# Assume that positive-dimension tensor optimizer state
# has the same shape as the sharded flattened parameter
buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
tensor_buffer = value.new_zeros(*buffer_size)
dist.all_gather_into_tensor(
tensor_buffer, value, group=fsdp_state.process_group
)
torch.cuda.synchronize()
unpadded_numel = cast(
nn.Parameter, flat_param._unpadded_unsharded_size
).numel()
tensor_state[state_name] = tensor_buffer[:unpadded_numel]
# Zero-dimension tensor state and non-tensor state: take this rank's
# value directly
else:
if _is_zero_dim_tensor(value):
zero_dim_tensor_state[state_name] = value
else:
non_tensor_state[state_name] = value
return state
def _unflatten_communicated_optim_state(
fsdp_param_info: FSDPParamInfo,
state: _ConsolidatedOptimState,
shard_state: bool,
) -> List[Dict[str, Any]]:
"""
Unflattens the communicated optimizer state (given by ``tensor_state``,
``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flattened
parameter. This should only be called on the target rank.
Args:
fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
parameter.
state (_ConsolidatedOptimState): Consolidated optimizer state.
Returns:
List[Dict[str, Any]]: A :class:`list` holding the entries in the
"state" part of the optimizer state dict corresponding to the
unflattened parameters comprising the flattened parameter. The final
optimizer state dict will need to map these entries using the proper
unflattened parameter IDs.
"""
fsdp_state = fsdp_param_info.state
flat_param = fsdp_param_info.flat_param
unflat_param_state: List[Dict[str, Any]] = []
flat_param_views: Dict[str, Iterator] = {}
num_unflat_params = flat_param._num_params
tensor_state, zero_dim_tensor_state, non_tensor_state = (
state.tensor_state,
state.zero_dim_tensor_state,
state.non_tensor_state,
)
for _ in range(num_unflat_params):
unflat_state_param = {}
# Add positive-dimension tensor state: unflatten with views
for state_name, flat_tensor in sorted_items(tensor_state):
views_generated = state_name in flat_param_views
if not views_generated:
views = FlatParamHandle._get_unflat_views(flat_param, flat_tensor)
flat_param_views[state_name] = views
else:
views = flat_param_views[state_name]
optim_state: Union[torch.Tensor, ShardedTensor] = next(views)
if shard_state:
assert fsdp_state.process_group is not None
optim_state = _ext_chunk_tensor(
optim_state,
fsdp_state.rank,
fsdp_state.world_size,
torch.cuda.device_count(),
fsdp_state.process_group,
)
unflat_state_param[state_name] = optim_state
# Add zero-dimension tensor state: take the target rank's value
for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
unflat_state_param[state_name] = zero_dim_tensor
# Add non-tensor state: take the target rank's value
for state_name, non_tensor in sorted_items(non_tensor_state):
unflat_state_param[state_name] = non_tensor
unflat_param_state.append(unflat_state_param)
return unflat_param_state
def _flatten_optim_state_dict(
optim_state_dict: Dict[str, Any],
model: nn.Module,
shard_state: bool,
use_orig_params: bool = False,
optim: Optional[torch.optim.Optimizer] = None,
) -> Dict[str, Any]:
"""
Flattens the full optimizer state dict, still keying by unflattened
parameter names. If ``shard_state=True``, then FSDP-managed
``FlatParameter`` 's optimizer states are sharded, and otherwise, they are
kept unsharded.
If ``use_orig_params`` is True, each rank will have all FSDP-managed
parameters but some of these parameters may be empty due to the sharding.
For a regular optim.Optimizer, states for those empty parameters will
not be initialized. So, when aggregating the FQNs across ranks, no assert
will be raised on a rank even if it does not have all the states -- it is
valid and FSDP know how to aggregate them. However, FSDP has to ignore
handling those parameters that are not managed by FSDP and do not exist on
the local rank -- it is managed by other parallelism and FSDP does not
know ho to handle/aggregate them.
Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
all the states even if the corresponding parameters are empty. To this end,
``optim`` will be used to to get the initial state of the empty parameters.
``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
NamedOptimizer.
Returns:
Dict[str, Any]: The flattened optimizer state dict.
"""
unflat_osd = optim_state_dict
if "state" not in unflat_osd or "param_groups" not in unflat_osd:
raise ValueError(
'`optim_state_dict` must have the keys "state" and '
'"param_groups" to be a valid optimizer state dict'
)
param_to_fqns = _get_param_to_fqns(model)
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
# Construct the "state" part
flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
unflat_osd_state = unflat_osd["state"]
all_state_keys = set(unflat_osd_state.keys())
# local_state_dict is used to construct states of empty parameters.
# This should only be used if is_named_optimizer=True.
local_state_dict: Dict[str, Any] = {}
local_state_clean_fqns: Dict[str, str] = {}
if optim is not None:
local_state_dict = optim.state_dict()["state"]
for fqn in local_state_dict.keys():
clean_fqn = clean_tensor_name(fqn)
local_state_clean_fqns[clean_fqn] = fqn
for param, unflat_param_names in param_to_fqns.items():
fqn = unflat_param_names[0]
if fqn not in unflat_osd_state:
continue
all_state_keys.difference_update(unflat_param_names)
if fqn in fqn_to_fsdp_param_info:
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
if use_orig_params:
assert (
shard_state
), "If use_orig_params is True, shard_state must be True."
flat_state = _shard_orig_param_state(
fsdp_param_info,
fqn,
unflat_osd_state[fqn],
)
else:
flat_state = _flatten_optim_state(
fsdp_param_info,
unflat_osd_state,
unflat_param_names,
shard_state,
)
key = _OptimStateKey(tuple(unflat_param_names), True)
# Only include non-empty states since as expected by
# `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
# or NamedOptimizer.
if flat_state:
flat_osd_state[key] = flat_state
elif optim is not None: # NamedOptimizer or KeyedOptimizer case.
assert len(unflat_param_names) == 1
local_wrapped_fqn = local_state_clean_fqns.get(fqn, "")
if local_wrapped_fqn:
flat_osd_state[key] = copy.deepcopy(
local_state_dict[local_wrapped_fqn]
)
else: # do not flatten non-FSDP parameters' states
assert len(unflat_param_names) == 1
key = _OptimStateKey(tuple(unflat_param_names), False)
flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])
# Handle user-defined state, states that are not accosiated with parameters.
for key in all_state_keys:
flat_osd_state[key] = copy.copy(unflat_osd_state[key])
# Construct the "param_groups" part -- copy as is since it will be
# rekeyed later according to the target rank's optimizer
flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
def _flatten_optim_state(
fsdp_param_info: FSDPParamInfo,
unflat_osd_state: Dict[str, Dict[str, Any]],
unflat_param_names: List[str],
shard_state: bool,
) -> Dict[str, Any]:
"""
Flattens the optimizer state in ``full_optim_state_dict`` for a single
flattened parameter in ``fsdp_param_info`` corresponding to the unflattened
parameter names in ``unflat_param_names``.
Args:
unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
optimizer state dict corresponding to the unflattened parameters.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the flattened parameter
``flat_param``.
fsdp_param_info (FSDPParamInfo): The fsdp state and the target flatten
parameter.
shard_state (bool): Whether to shard flattened positive-dimension
tensor state; if ``False``, then the full flattened tensor is
kept in the returned :class:`dict.
Returns:
Dict[str, Any]: A :class:`dict` mapping state names to their values for
a particular flattened parameter. The sharded optimizer state dict's
"state" part will map a key to this returned value.
"""
fsdp_state = fsdp_param_info.state
flat_param = fsdp_param_info.flat_param
num_unflat_params = len(unflat_param_names)
assert num_unflat_params > 0, (
"Expects at least one unflattened parameter corresponding to the "
"flattened parameter"
)
unflat_param_shapes = flat_param._shapes
num_unflat_param_shapes = len(unflat_param_shapes)
assert (
num_unflat_params == num_unflat_param_shapes
), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
# Check if these unflattened parameters have any optimizer state
has_state = [
bool(unflat_param_name in unflat_osd_state)
for unflat_param_name in unflat_param_names
]
# If none of the unflattened parameters comprising this flattened parameter
# have any state, then we do not want an entry in the optimizer state dict
if not any(has_state):
return {} # no need to flatten any state
# There may still be some unflattened parameters with state and some
# without
unflat_param_states = [
_gather_state_dict(
unflat_osd_state[unflat_param_name], pg=fsdp_state.process_group
)
if unflat_param_name in unflat_osd_state
else None
for unflat_param_name in unflat_param_names
]
# Check that the unflattened parameters have the same state names
state_names = None
for unflat_param_state in unflat_param_states:
if unflat_param_state is None:
continue
if state_names is None:
state_names = set(unflat_param_state.keys())
else:
if state_names != set(unflat_param_state.keys()):
raise ValueError(
"Differing optimizer state names for the unflattened "
f"parameters: {unflat_param_names}"
)
assert state_names is not None
# Flatten the state
flat_state: Dict[str, Any] = {}
for state_name in state_names:
state_values = [
unflat_param_state[state_name] if unflat_param_state is not None else None
for unflat_param_state in unflat_param_states
]
non_none_state_values = [v for v in state_values if v is not None]
are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
for v in non_none_state_values:
are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
are_zero_dim_tensors &= _is_zero_dim_tensor(v)
are_non_tensors &= not torch.is_tensor(v)
types = {type(v) for v in non_none_state_values}
if len(types) != 1 or not (
are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
):
raise ValueError(
f"Differing optimizer state types for state {state_name}, "
f"values {non_none_state_values}, and unflattened parameter "
f"names {unflat_param_names}"
)
if are_pos_dim_tensors:
flat_tensor = _flatten_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
unflat_param_shapes,
flat_param,
)
if shard_state:
# Shard the flattened tensor immediately to minimize max memory
# usage
sharded_flat_tensor, _ = FlatParamHandle._get_shard(
flat_tensor,
fsdp_state.rank,
fsdp_state.world_size,
)
flat_state[state_name] = sharded_flat_tensor
else:
flat_state[state_name] = flat_tensor
elif are_zero_dim_tensors:
flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
)
else:
assert are_non_tensors
flat_state[state_name] = _flatten_non_tensor_optim_state(
state_name,
state_values,
unflat_param_names,
)
return flat_state
def _flatten_tensor_optim_state(
state_name: str,
pos_dim_tensors: List[torch.Tensor],
unflat_param_names: List[str],
unflat_param_shapes: Sequence[torch.Size],
flat_param: FlatParameter,
) -> torch.Tensor:
"""
Flattens the positive-dimension tensor optimizer state given by the values
``tensors`` for the state ``state_name`` for a single flattened parameter
``flat_param`` corresponding to the unflattened parameter names
``unflat_param_names`` and unflatted parameter shapes
``unflat_param_shapes``. This flattens each unflattened parameter's tensor
state into one tensor.
NOTE: We use zero tensors for any unflattened parameters without state
since some value is required to fill those entries. This assumes that the
zero tensor is mathematically equivalent to having no state, which is true
for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
optimizers.
Args:
state_name (str): Optimizer state name.
pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
optimizer state values for the unflattened parameters corresponding
to the single flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
corresponding to the single flattened parameter.
flat_param (FlatParameter): The flattened parameter.
Returns:
torch.Tensor: A flattened tensor containing the optimizer state
corresponding to ``state_name`` constructed by concatenating the
unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
tensors for any unflattened parameters without the state).
"""
non_none_tensors = [t for t in pos_dim_tensors if t is not None]
# Check that all are tensors with the same dtype
dtypes = {t.dtype for t in non_none_tensors}
if len(dtypes) != 1:
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have positive-dimension tensor state with the "
f"same dtype but got dtypes {dtypes} for state {state_name} and "
f"unflattened parameter names {unflat_param_names}"
)
dtype = next(iter(dtypes))
# Check that each tensor state matches its parameter's shape
for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
if tensor is None and len(shape) == 0:
raise ValueError("Flattening a zero-dimension parameter is not supported")
elif tensor is not None and tensor.shape != shape:
raise ValueError(
"Tensor optimizer state does not have same shape as its "
f"parameter: {tensor.shape} {shape}"
)
# Flatten the tensor states: we do not need to add any padding since the
# flattened optimizer state tensor sharded via `_get_shard()`, which pads
# the shard as needed (just like for the flattened parameter)
cpu_device = torch.device("cpu")
tensors = [
torch.flatten(state_value.to(cpu_device))
if state_value is not None
else torch.flatten(
torch.zeros(
size=shape,
dtype=dtype,
device=cpu_device,
)
)
for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
]
flat_tensor = torch.cat(tensors)
flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
assert flat_tensor.shape == flat_param_shape, (
f"tensor optim state: {flat_tensor.shape} "
f"flattened parameter: {flat_param_shape}"
)
return flat_tensor
def _flatten_zero_dim_tensor_optim_state(
state_name: str,
zero_dim_tensors: List[torch.Tensor],
unflat_param_names: List[str],
) -> torch.Tensor:
"""
Flattens the zero-dimension tensor optimizer state given by the values
``zero_dim_tensors`` for the state ``state_name`` for a single flattened
parameter corresponding to the unflattened parameter names
``unflat_param_names`` by enforcing that all tensors are the same and using
that common value.
NOTE: The requirement that the tensors are the same across all unflattened
parameters comprising the flattened parameter is needed to maintain the
invariant that FSDP performs the same computation as its non-sharded
equivalent. This means that none of the unflattened parameters can be
missing this state since imposing a value may differ from having no value.
For example, for Adam's "step", no value means maximum bias correction,
while having some positive value means less bias correction.
Args:
state_name (str): Optimizer state name.
zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
for the unflattened parameters corresponding to the single
flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
Returns:
torch.Tensor: A zero-dimensional tensor giving the value of the state
``state_name`` for all unflattened parameters corresponding to the
names ``unflat_param_names``.
"""
non_none_tensors = [t for t in zero_dim_tensors if t is not None]
# Enforce that all have the same value and dtype
values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
if (
len(non_none_tensors) != len(zero_dim_tensors)
or len(values_set) != 1
or len(dtypes) != 1
):
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have scalar state with the same value and dtype "
f"but got values {values_set} and dtypes {dtypes} for state "
f"{state_name} and unflattened parameter names "
f"{unflat_param_names}"
)
value = next(iter(values_set))
dtype = next(iter(dtypes))
return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
def _flatten_non_tensor_optim_state(
state_name: str,
non_tensors: List[Any],
unflat_param_names: List[str],
) -> Any:
"""
Flattens the non-tensor optimizer state given by the values ``non_tensors``
for the state ``state_name`` for a single flattened parameter corresponding
to the unflattened parameter names ``unflat_param_names`` by enforcing that
all values are the same and using that common value.
See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
Args:
state_name (str): Optimizer state name.
non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
parameters corresponding to the single flattened parameter.
unflat_param_names (List[str]): A :class:`list` of unflattened
parameter names corresponding to the single flattened parameter.
Returns:
Any: A non-tensor giving the value of the state ``state_name`` for all
unflattened parameters corresponding to the names
``unflat_param_names``.
"""
non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
# Enforce that all have the same value (same type already checked)
non_tensor_set = set(non_tensors)
if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
raise ValueError(
"All unflattened parameters comprising a single flattened "
"parameter must have scalar state with the same value and dtype "
f"but got values {non_tensor_set} for state {state_name} and "
f"unflattened parameter names {unflat_param_names}"
)
non_tensor = next(iter(non_tensor_set))
return non_tensor
def _process_pos_dim_tensor_state(
flat_optim_state_dict: Dict[str, Any],
world_size: int,
) -> Dict[str, Any]:
"""
Processes positive-dimension tensor states in ``flat_optim_state_dict`` by
replacing them with metadata. This is done so the processed optimizer state
dict can be broadcast from rank 0 to all ranks without copying those tensor
states, and thus, this is meant to only be called on rank 0.
Args:
flat_optim_state_dict (Dict[str, Any]): Flattened optimizer state dict
with the positive-dimension tensor states unsharded.
Returns:
Dict[str, Any]: The flattened optimizer state dict with positive-
dimension tensor states replaced by metadata.
"""
flat_osd = flat_optim_state_dict # alias
no_tensor_osd: Dict[str, Any] = {"state": {}}
for key, param_state in flat_osd["state"].items():
no_tensor_osd["state"][key] = {}
for state_name, value in sorted_items(param_state):
is_pos_dim_tensor_state = torch.is_tensor(value) and value.dim() > 0
if not is_pos_dim_tensor_state:
no_tensor_osd["state"][key][state_name] = value
continue
if key.is_fsdp_managed: # FSDP parameter
sharded_size = FlatParamHandle._get_sharded_size(
value, rank=0, world_size=world_size
)
assert len(sharded_size) == 1, f"{sharded_size}"
info = _PosDimTensorInfo(sharded_size, value.dtype)
else: # non-FSDP parameter
info = _PosDimTensorInfo(value.shape, value.dtype)
no_tensor_osd["state"][key][state_name] = info
no_tensor_osd["param_groups"] = flat_osd["param_groups"]
return no_tensor_osd
def _broadcast_processed_optim_state_dict(
processed_optim_state_dict: Optional[Dict[str, Any]],
rank: int,
group,
) -> Dict[str, Any]:
"""
Broadcasts the processed optimizer state dict from rank 0 to all ranks.
Args:
processed_optim_state_dict (Optional[Dict[str, Any]]): The flattened
optimizer state dict with positive-dimension tensor states replaced
with metadata if on rank 0; ignored otherwise.
Returns:
Dict[str, Any]: The processed optimizer state dict.
"""
# Broadcast the two data structures rank 0 to all ranks
obj_list = [processed_optim_state_dict] if rank == 0 else [None]
dist.broadcast_object_list(obj_list, src=0, group=group)
processed_optim_state_dict = obj_list[0] # type: ignore[assignment]
assert processed_optim_state_dict is not None
# Keep zero-dimension tensors on CPU
return processed_optim_state_dict
def _broadcast_pos_dim_tensor_states(
processed_optim_state_dict: Dict[str, Any],
flat_optim_state_dict: Optional[Dict[str, Any]],
rank: int,
world_size: int,
group,
broadcast_device: torch.device,
) -> Dict[str, Any]:
"""
Takes ``processed_optim_state_dict``, which has metadata in place of
positive-dimension tensor states, and broadcasts those tensor states from
rank 0 to all ranks. For tensor states corresponding to FSDP parameters,
rank 0 shards the tensor and broadcasts shard-by-shard, and for tensor
states corresponding to non-FSDP parameters, rank 0 broadcasts the full
tensor.
Args:
processed_optim_state_dict (Dict[str, Any]): The flattened optimizer
state dict with positive-dimension tensor states replaced with
metadata; this should be returned by
:meth:`_process_pos_dim_tensor_state` and non-empty on all ranks.
flat_optim_state_dict (Optional[Dict[str, Any]]): The flattened
unsharded optimizer state dict with the actual positive-dimension
tensor states if on rank 0; ignored on nonzero ranks.
Returns:
Dict[str, Any]: The optimizer state dict with the positive-dimension
tensor state correctly populated via ``broadcast()`` s from rank 0.
"""
assert (
rank != 0 or flat_optim_state_dict is not None
), "Expects rank 0 to pass in the flattened optimizer state dict"
no_tensor_osd = processed_optim_state_dict # alias
flat_osd = flat_optim_state_dict # alias
for key, param_state in no_tensor_osd["state"].items():
for state_name, value in sorted_items(param_state):
is_pos_dim_tensor_state = isinstance(value, _PosDimTensorInfo)
if not is_pos_dim_tensor_state:
continue
if rank == 0:
assert flat_osd is not None
unsharded_tensor = flat_osd["state"][key][state_name]
else:
unsharded_tensor = None
shape, dtype = value.shape, value.dtype
if key.is_fsdp_managed: # FSDP parameter
_broadcast_sharded_pos_dim_tensor_state(
unsharded_tensor,
param_state,
state_name,
shape,
dtype,
broadcast_device,
rank,
world_size,
group,
) # modify `param_state` destructively
else: # non-FSDP parameter
_broadcast_unsharded_pos_dim_tensor_state(
unsharded_tensor,
param_state,
state_name,
shape,
dtype,
broadcast_device,
rank,
group,
) # modify `param_state` destructively
return no_tensor_osd
def _broadcast_sharded_pos_dim_tensor_state(
unsharded_tensor: Optional[torch.Tensor],
param_state: Dict[str, Any],
state_name: str,
shape: torch.Size,
dtype: torch.dtype,
broadcast_device: torch.device,
rank: int,
world_size: int,
group,
) -> None:
"""
Broadcasts positive-dimension tensor state for the state ``state_name``
corresponding to an FSDP parameter shard-by-shard, only to be saved on the
relevant rank. This modifies ``param_state`` destructively.
Args:
unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor from which
to broadcast shards if on rank 0; ignored otherwise.
shape (torch.Size): Shape of the sharded tensor; same on all ranks.
"""
get_shard: Optional[functools.partial[Tuple[torch.Tensor, int]]] = None
if rank == 0:
assert (
unsharded_tensor is not None
), "Expects rank 0 to pass in the unsharded tensor"
get_shard = functools.partial(
FlatParamHandle._get_shard,
unsharded_tensor,
)
for target_rank in range(1, world_size):
if rank == 0:
assert get_shard is not None
sharded_tensor = get_shard(target_rank, world_size)[0].to(broadcast_device)
else:
sharded_tensor = torch.zeros(
shape,
requires_grad=False,
dtype=dtype,
device=broadcast_device,
)
dist.broadcast(sharded_tensor, src=0, group=group)
# Only keep the shard on the target rank and keep it on the broadcast
# device, which is typically GPU
if rank == target_rank:
param_state[state_name] = sharded_tensor
else:
del sharded_tensor
# Lastly, shard on rank 0
if rank != 0:
return
param_state[state_name] = get_shard(0, world_size)[0].to(broadcast_device) # type: ignore[misc]
def _broadcast_unsharded_pos_dim_tensor_state(
unsharded_tensor: Optional[torch.Tensor],
param_state: Dict[str, Any],
state_name: str,
shape: torch.Size,
dtype: torch.dtype,
broadcast_device: torch.device,
rank: int,
group,
) -> None:
"""
Broadcasts positive-dimension tensor state for the state ``state_name``
corresponding to an unsharded non-FSDP parameter from rank 0 to all ranks.
This modifies ``param_state`` destructively.
Args:
unsharded_tensor (Optional[torch.Tensor]): Unsharded tensor to
broadcast if on rank 0; ignored otherwise.
"""
if rank == 0:
assert (
unsharded_tensor is not None
), "Expects rank 0 to pass in the unsharded tensor"
assert (
shape == unsharded_tensor.shape
), f"Shape mismatch: {shape} {unsharded_tensor.shape}"
assert (
dtype == unsharded_tensor.dtype
), f"dtype mismatch: {dtype} {unsharded_tensor.dtype}"
unsharded_tensor = unsharded_tensor.to(broadcast_device)
else:
unsharded_tensor = torch.zeros(
shape,
requires_grad=False,
dtype=dtype,
device=broadcast_device,
)
dist.broadcast(unsharded_tensor, src=0, group=group)
# Keep the tensor on the broadcast device, which is typically GPU
param_state[state_name] = unsharded_tensor
def _rekey_sharded_optim_state_dict(
sharded_osd: Dict[str, Any],
model: nn.Module,
optim: torch.optim.Optimizer,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[nn.Parameter],
]
],
using_optim_input: bool,
is_named_optimizer: bool = False,
) -> Dict[str, Any]:
"""
Rekeys the optimizer state dict from unflattened parameter names to
flattened parameter IDs according to the calling rank's ``optim``, which
may be different across ranks. In particular, the unflattened parameter
names are represented as :class:`_OptimStateKey` s.
"""
param_to_fqns = _get_param_to_fqns(model)
flat_param_to_fqn = _get_flat_param_to_fqn(model)
param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
Dict[nn.Parameter, Union[int, str]],
(
_get_param_to_param_id_from_optim_input(model, optim_input)
if using_optim_input
else _get_param_to_param_key(
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
)
),
)
# All parameter keys in `param_to_param_key` should be in
# `param_to_fqns` -- strict inequality follows when not all parameters are
# passed to the optimizer
assert len(param_to_param_key) <= len(param_to_fqns)
unflat_param_names_to_flat_param_key: Dict[
Tuple[str, ...], Union[int, str]
] = {} # for "state"
unflat_param_name_to_flat_param_key: Dict[
str, Union[int, str]
] = {} # for "param_groups"
for param, unflat_param_names in param_to_fqns.items():
if param not in param_to_param_key:
# This parameter was not passed to the optimizer
continue
flat_param_key = param_to_param_key[param]
unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
for unflat_param_name in unflat_param_names:
unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key
sharded_osd_state = sharded_osd["state"]
rekeyed_osd_state: Dict[Union[str, int], Any] = {}
for key, param_state in sharded_osd_state.items():
if isinstance(key, str):
rekeyed_osd_state[key] = param_state
continue
flat_param_key = unflat_param_names_to_flat_param_key.get(
key.unflat_param_names, key.unflat_param_names
)
rekeyed_osd_state[flat_param_key] = param_state
rekeyed_osd_param_groups: List[Dict[str, Any]] = []
for unflat_param_group in sharded_osd["param_groups"]:
flat_param_group = copy.deepcopy(unflat_param_group)
flat_param_keys = sorted(
{
unflat_param_name_to_flat_param_key[unflat_param_name]
for unflat_param_name in unflat_param_group["params"]
}
)
flat_param_group["params"] = flat_param_keys
rekeyed_osd_param_groups.append(flat_param_group)
return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
def _get_param_id_to_param_from_optim_input(
model: nn.Module,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[nn.Parameter],
]
] = None,
) -> Dict[int, nn.Parameter]:
"""
Constructs a mapping from parameter IDs to parameters. This may be used
both for models with ``FlatParameter`` s and without.
NOTE: This method is only preserved for backward compatibility. The method
:meth:`_get_param_key_to_param` is the preferred code path that does not
rely on ``optim_input``.
NOTE: We critically assume that, whether the optimizer input is a list of
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
enumerates the parameter IDs in order. In other words, for a parameter list
input, the parameter IDs should be in that list order, and for a parameter
groups input, the parameter IDs should be in order within each parameter
group and in order across parameter groups.
Args:
model (nn.Module): Model whose parameters are passed into the
optimizer.
optim_input (Optional[Union[List[Dict[str, Any]],
Iterable[nn.Parameter]]]): Input passed into the optimizer
representing either a :class:`list` of parameter groups or an
iterable of parameters; if ``None``, then this method assumes the
input was ``model.parameters()``. (Default: ``None``)
Returns:
List[nn.Parameter]: Mapping from parameter IDs to parameters,
where the parameter ID is implicitly the index in the :class:`list`.
"""
# Assume the standard case of passing `model.parameters()` to the optimizer
# if `optim_input` is not specified
if optim_input is None:
return {pid: param for pid, param in enumerate(model.parameters())}
try:
params = cast(List[nn.Parameter], list(optim_input))
except TypeError as e:
raise TypeError(
"Optimizer input should be an iterable of Tensors or dicts, "
f"but got {optim_input}"
) from e
if len(params) == 0:
raise ValueError("Optimizer input should not be empty")
# Check if the optimizer input represents tensors or parameter groups
all_tensors = True
all_dicts = True
for param in params:
all_tensors &= isinstance(param, torch.Tensor)
all_dicts &= isinstance(param, dict)
if not all_tensors and not all_dicts:
raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
if all_tensors:
return {pid: param for pid, param in enumerate(params)}
assert all_dicts
param_id_to_param: List[nn.Parameter] = []
for param_group in params:
has_params_key = "params" in param_group # type: ignore[operator]
assert has_params_key, (
'A parameter group should map "params" to a list of the '
"parameters in the group"
)
for param in param_group["params"]: # type: ignore[index]
# Implicitly map `flat_param_id` (current length of the list) to
# `param`
param_id_to_param.append(param)
return {pid: param for pid, param in enumerate(param_id_to_param)}
def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[nn.Parameter, str]:
def module_fn(module, prefix, flat_param_to_fqn):
for param_name, param in module.named_parameters(recurse=False):
if type(param) is not FlatParameter:
continue
fqn = clean_tensor_name(prefix + param_name)
flat_param_to_fqn[param] = fqn
def return_fn(flat_param_to_fqn):
return flat_param_to_fqn
flat_param_to_fqn_ret: Dict[torch.nn.Parameter, str] = {}
return _apply_to_modules(
model,
module_fn,
return_fn,
[fqn for fqn, _ in model.named_parameters()],
flat_param_to_fqn_ret,
)
def _get_param_key_to_param(
optim: torch.optim.Optimizer,
model: Optional[nn.Module] = None,
is_named_optimizer: bool = False,
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
) -> Dict[Union[int, str], nn.Parameter]:
"""
Constructs a mapping from parameter keys to parameters. For the regular
optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
are FQNs. This API may be used both for models with ``FlatParameter`` s and
without.
"""
clean_fqn_to_curr_fqn: Dict[str, str] = {}
if is_named_optimizer:
assert (
param_to_fqns is not None and flat_param_to_fqn is not None
), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
assert model is not None
for key, _ in model.named_parameters():
clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key
param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
pid = 0
for param_group in optim.param_groups:
if is_named_optimizer:
for param in param_group["params"]:
assert flat_param_to_fqn is not None
if param in flat_param_to_fqn:
# FlatParameter case
key = flat_param_to_fqn[param]
else:
assert param_to_fqns is not None
# use_orig_params case
assert len(param_to_fqns[param]) == 1
key = param_to_fqns[param][0]
key = clean_fqn_to_curr_fqn[key]
param_key_to_param[key] = param
else:
for param in param_group["params"]:
param_key_to_param[pid] = param
pid += 1
return param_key_to_param
def _get_param_to_param_key(
optim: torch.optim.Optimizer,
model: Optional[nn.Module] = None,
is_named_optimizer: bool = False,
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
flat_param_to_fqn: Optional[Dict[nn.Parameter, str]] = None,
) -> Dict[nn.Parameter, Union[int, str]]:
"""
Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
So the parameter keys will be parameter id.
"""
param_id_to_param = _get_param_key_to_param(
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
)
return {param: param_id for param_id, param in param_id_to_param.items()}
def _get_param_to_param_id_from_optim_input(
model: nn.Module,
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[nn.Parameter],
]
] = None,
) -> Dict[nn.Parameter, int]:
"""Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
return {param: param_id for param_id, param in param_id_to_param.items()}
def _check_missing_keys_on_rank(
r0_optim_state_keys: List[_OptimStateKey],
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
param_key_to_param: Dict[Union[str, int], nn.Parameter],
group: Optional[dist.ProcessGroup],
) -> None:
# Ensure that all ranks have at least the optimizer states needed by
# rank 0's optimizer
missing_keys: List[_OptimStateKey] = []
for r0_optim_state_key in r0_optim_state_keys:
if r0_optim_state_key not in optim_state_key_to_param_key:
# A parameter from rank 0's optimizer does not exist for this
# rank's optimizer
missing_keys.append(r0_optim_state_key)
continue
param_key = optim_state_key_to_param_key[r0_optim_state_key]
if isinstance(param_key, int):
assert param_key >= 0 and param_key < len(
param_key_to_param
), "Check the `param_key_to_param` construction"
device = torch.device("cuda", torch.cuda.current_device())
num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
dist.all_reduce(num_missing, group=group)
if num_missing.item() > 0:
obj_list = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(obj_list, missing_keys, group=group)
error_msg = (
"FSDP currently requires each rank to have at least the "
"optimizer states needed by rank 0's optimizer but some ranks "
"are missing some of those states"
)
for rank, keys in enumerate(obj_list):
keys = cast(List[_OptimStateKey], keys)
if len(keys) > 0:
error_msg += (
f"\nRank {rank} is missing states for the parameters: "
f"{[key.unflat_param_names for key in keys]}"
)
raise RuntimeError(error_msg)
def _map_param_key_to_optim_keys(
optim_state_dict: Dict[str, Any],
group: Optional[dist.ProcessGroup],
param_key_to_param: Dict[Union[int, str], nn.Parameter],
param_to_fqns: Dict[nn.Parameter, List[str]],
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
merge_keys: bool = False,
) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
"""
Construct the local mapping between the ``_OptimStateKey`` and parameter keys
and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
Note that ``merge_keys`` should equal to ``use_orig_params``.
"""
rank = dist.get_rank(group)
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {} # local
all_optim_state_keys: List[_OptimStateKey] = []
for param_key, param in param_key_to_param.items():
# Do not include parameters without state to avoid empty mappings
# just like in normal `torch.optim.Optimizer.state_dict()`
if param_key not in optim_state_dict["state"]:
continue
fqns = param_to_fqns[param]
is_fsdp_managed = isinstance(param, FlatParameter)
if is_fsdp_managed:
assert fqns[0] in fqn_to_fsdp_param_info, (
fqns[0],
list(fqn_to_fsdp_param_info.keys()),
)
is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
optim_state_key = _OptimStateKey(
unflat_param_names=tuple(fqns),
is_fsdp_managed=is_fsdp_managed,
)
if rank == 0 or merge_keys:
all_optim_state_keys.append(optim_state_key)
optim_state_key_to_param_key[optim_state_key] = param_key
if merge_keys:
all_keys: List[List[_OptimStateKey]] = [
[] for _ in range(dist.get_world_size(group))
]
dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
merge_all_optim_state_keys = [
key for local_keys in all_keys for key in local_keys
]
all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
else:
key_obj_list: List[Optional[List[_OptimStateKey]]] = (
[all_optim_state_keys] if rank == 0 else [None]
)
dist.broadcast_object_list(key_obj_list, src=0, group=group)
assert key_obj_list[0] is not None
all_optim_state_keys = key_obj_list[0]
_check_missing_keys_on_rank(
all_optim_state_keys,
optim_state_key_to_param_key,
param_key_to_param,
group,
)
return all_optim_state_keys, optim_state_key_to_param_key
def _unflatten_param_groups(
state_dict: Dict[str, Any],
param_key_to_param: Dict[Union[int, str], nn.Parameter],
param_to_fqns: Dict[nn.Parameter, List[str]],
) -> List[Dict[str, Any]]:
param_groups: List[Dict[str, Any]] = []
for flat_param_group in state_dict["param_groups"]:
unflat_param_group = copy.deepcopy(flat_param_group)
param_group_params = [
param_key_to_param[flat_param_key]
for flat_param_key in flat_param_group["params"]
]
nested_unflat_param_names = [
param_to_fqns[param] for param in param_group_params
]
unflat_param_group["params"] = [
unflat_param_name
for unflat_param_names in nested_unflat_param_names
for unflat_param_name in unflat_param_names
] # flatten the list of lists
param_groups.append(unflat_param_group)
return param_groups
def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
state = optim_state_dict.get("state", None)
if not state:
# If we cannot find a state, assume it is not NamedOptimizer as
# NamedOptimizer has eagerly initialization.
return False
try:
key = next(iter(state.keys()))
except Exception as e:
raise Exception(optim_state_dict) from e
return isinstance(key, str)
def _optim_state_dict(
model: nn.Module,
optim: torch.optim.Optimizer,
optim_state_dict: Dict[str, Any],
optim_input: Optional[
Union[
List[Dict[str, Any]],
Iterable[nn.Parameter],
]
],
rank0_only: bool,
shard_state: bool,
group: Optional[dist.ProcessGroup],
using_optim_input: bool,
use_orig_params: bool = False,
) -> Dict[str, Any]:
"""
Consolidates the optimizer state and returns it as a :class:`dict`
following the convention of :meth:`torch.optim.Optimizer.state_dict`,
i.e. with keys ``"state"`` and ``"param_groups"``.
The flattened parameters in ``FSDP`` modules contained in ``model``
are mapped back to their unflattened parameters.
Parameter keys are not well-defined. For a regular optimizer, the optimizer
state_dict contains a mapping from parameter IDs to parameter states.
Parameter IDs are the order of parameters in ``optim.param_groups()`` across
all the groups. This API also allows user to pass ``optim_input`` for the
mapping between parameters and parameter IDs. Using ``optim_input`` is being
deprecated.
If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
contain parameter IDs mapping but a mapping from parameter FQNs to parameter
states. This API finds the mapping from FQNs to parameters if the optimizer
is a ``NamedOptimizer``.
If ``use_orig_params`` is True, each rank will have all FSDP-managed
parameters but some of these parameters may be empty due to the sharding.
For a regular optim.Optimizer, states for those empty parameters will
not be initialized. So, when aggregating the FQNs across ranks, no assert
will be raised on a rank even if it does not have all the states -- it is
valid and FSDP know how to aggregate them. However, FSDP has to ignore
handling those parameters that are not managed by FSDP and do not exist on
the local rank -- it is managed by other parallelism and FSDP does not
know ho to handle/aggregate them.
Args:
model (nn.Module): Root module (which may or may not be a
:class:`FullyShardedDataParallel` instance) whose parameters
were passed into the optimizer ``optim``.
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
parameters.
rank0_only (bool): If ``True``, saves the populated :class:`dict`
only on rank 0; if ``False``, saves it on all ranks. (Default:
``True``)
shard_state (bool): If ``True``, shard and distribute all
non-zero-dimension states.
Returns:
Dict[str, Any]: A :class:`dict` containing the optimizer state for
``model`` 's original unflattened parameters and including keys
"state" and "param_groups" following the convention of
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
then nonzero ranks return an empty :class:`dict`.
"""
_clear_grads_if_needed(traversal_utils._get_fsdp_handles(model))
to_save = not rank0_only or (dist.get_rank(group) == 0 or shard_state)
fsdp_osd: Dict[str, Any] = {"state": {}, "param_groups": []} if to_save else {}
fsdp_osd_state: Dict[str, Any] = fsdp_osd["state"] if to_save else {}
param_to_fqns = _get_param_to_fqns(model)
flat_param_to_fqn = _get_flat_param_to_fqn(model)
is_named_optimizer = _is_named_optimizer(optim_state_dict)
param_key_to_param = cast(
Dict[Union[int, str], nn.Parameter],
(
_get_param_id_to_param_from_optim_input(model, optim_input)
if using_optim_input
else _get_param_key_to_param(
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
)
),
)
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
all_optim_state_keys, optim_state_key_to_param_key = _map_param_key_to_optim_keys(
optim_state_dict,
group,
param_key_to_param,
param_to_fqns,
fqn_to_fsdp_param_info,
merge_keys=use_orig_params,
)
# Iterate in rank 0's flattened parameter ID order to ensure aligned
# all-gathers across ranks
for optim_state_key in all_optim_state_keys:
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
optim_state_key, None
)
if param_key is None:
assert use_orig_params, (
"If use_orig_params is False, we must be able to find the "
f"corresponding param id. {optim_state_key} {param_key}"
)
if not optim_state_key.is_fsdp_managed:
continue
if optim_state_key.is_fsdp_managed:
# If there are multiple unflat_param_names (not use_orig_params),
# they share the same FSDPParamInfo. So the first unflat_param_name
# is sufficient to fetch the FSDPParamInfo.
fqn = optim_state_key.unflat_param_names[0]
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
if use_orig_params:
state = (
{} if param_key is None else optim_state_dict["state"][param_key]
)
unflat_state = [
_gather_orig_param_state(
fsdp_param_info, fqn, state, shard_state, group
)
]
else:
unflat_state = _unflatten_optim_state(
fsdp_param_info,
optim_state_dict["state"][param_key],
to_save,
shard_state,
)
if to_save:
assert len(unflat_state) == len(optim_state_key.unflat_param_names)
for unflat_param_name, unflat_param_state in zip(
optim_state_key.unflat_param_names,
unflat_state,
):
fsdp_osd_state[unflat_param_name] = unflat_param_state
elif to_save:
assert len(optim_state_key.unflat_param_names) == 1
unflat_param_name = optim_state_key.unflat_param_names[0]
fsdp_osd_state[unflat_param_name] = copy.copy(
optim_state_dict["state"][param_key]
)
for state_name, value in sorted_items(fsdp_osd_state[unflat_param_name]):
if torch.is_tensor(value):
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
if to_save:
flat_param_fqns = set(flat_param_to_fqn.values())
for key, value in optim_state_dict["state"].items():
if key in fsdp_osd_state:
continue
if key in flat_param_fqns:
continue
if key in param_key_to_param:
continue
# This key is not recognized by FSDP. It may be a user-defined state
# or some parameters state that FSDP is unable to map from
# ``optim.param_groups``.
warnings.warn(
f"Found a optim state, {key}, that FSDP cannot process. FSDP "
"will directly copy everything to the returned state_dict. In "
"most cases, this is a user-defined state that is not "
"associated with any particular parameter. Another possible "
"case is this state is managed by DMP. Otherwise, there may "
" be a mismatched assumption of optim_state_dict of this mode."
)
fsdp_osd_state[key] = value
fsdp_osd["param_groups"] = _unflatten_param_groups(
optim_state_dict, param_key_to_param, param_to_fqns
)
return fsdp_osd
def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
"""
Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
if the param is managed by FSDP. ``FlatParameter._fqns`` only stores the first
FQN of a shared parameter. So the keys in the mapping are guaranteed to map
to unique parameters.
"""
def module_fn(module, prefix, fqn_to_param_info):
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
if fsdp_state is None:
return
_lazy_init(fsdp_state, module)
handles = _module_handles(fsdp_state, module)
if not handles:
return
flat_param = handles[0].flat_param
fsdp_param_info = FSDPParamInfo(fsdp_state, flat_param, {})
for idx, local_fqn in enumerate(flat_param._fqns):
fqn = clean_tensor_name(prefix + local_fqn)
if fqn in fqn_to_param_info:
assert fqn_to_param_info[fqn].flat_param == flat_param
fqn_to_param_info[fqn] = fsdp_param_info
fsdp_param_info.param_indices[fqn] = idx
def return_fn(fqn_to_param_info):
return fqn_to_param_info
fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
# FlatParameter._fqns stores the local fqn, starting from the root of the
# FSDP. Using _apply_to_modules() with model (may not be the FSDP root
# module) allows us to construct the global fqn.
return _apply_to_modules(
model,
module_fn,
return_fn,
[fqn for fqn, _ in model.named_parameters()],
fqn_to_param_info,
)
@dataclass
class StateInfo:
tensors: Dict[str, _PosDimTensorInfo]
scalar_tensors: Dict[str, torch.Tensor]
non_tensors: Dict[str, Any]
@dataclass
class AllGatherInfo:
tensors: List[torch.Tensor]
numels: List[int]
work: Optional[dist.Work]
def _all_gather_optim_state(
fsdp_state: _FSDPState,
optim_state: Dict[str, Any],
group=None,
) -> Dict[str, Any]:
"""
All-gathering state from all the ranks. This API is slow as it uses
``all_gather_object``. However, optim state_dict is not in the critical path.
We can fuse the communication across differnt state if the performance
becomes a problem.
"""
# Allgather the scalar tensor state, non-tensor states and tensors metadata.
processed_state = StateInfo({}, {}, {})
for state_name, value in sorted_items(optim_state):
if torch.is_tensor(value):
if value.dim() == 0:
# Ensure that `step` is on CPU.
processed_state.scalar_tensors[state_name] = value.cpu()
else:
processed_state.tensors[state_name] = _PosDimTensorInfo(
value.shape, value.dtype
)
else:
processed_state.non_tensors = value
object_list: List[StateInfo] = [
processed_state for _ in range(fsdp_state.world_size)
]
dist.all_gather_object(object_list, processed_state, group=group)
# Convert the gathered, pre-proccessed state of each rank to the original one.
gathered_state: Dict[str, Any] = {}
all_tensor_states = sorted(
{n for state in object_list for n in state.tensors.keys()}
)
empty_ranks: Set[int] = set()
for name in all_tensor_states:
numels = []
dtype = torch.float
_empty_ranks: Set[int] = set()
for rank, object_state in enumerate(object_list):
numels.append(0)
info = object_state.tensors.get(name, None)
if info is not None:
numels[-1] = info.shape.numel()
dtype = info.dtype
if numels[-1] == 0:
_empty_ranks.add(rank)
empty_func = functools.partial(
torch.empty, dtype=dtype, device=fsdp_state.compute_device
)
if empty_ranks:
assert empty_ranks == _empty_ranks
empty_ranks = _empty_ranks
local_state = optim_state.get(name, empty_func(0))
local_state = local_state.to(fsdp_state.compute_device)
tensors = [
empty_func(numel) if rank != fsdp_state.rank else local_state
for rank, numel in enumerate(numels)
]
work = dist.all_gather(
tensors, local_state, group=fsdp_state.process_group, async_op=True
)
gathered_state[name] = AllGatherInfo(tensors, numels, work)
for rank, object_state in enumerate(object_list):
if rank in empty_ranks:
continue
for name, non_tensor_value in object_state.non_tensors.items():
curr_non_tensor_value = gathered_state.get(name, None)
assert (
curr_non_tensor_value is None
or curr_non_tensor_value == non_tensor_value
), f"Different ranks have different values for {name}."
gathered_state[name] = non_tensor_value
for name, scalar_tensor_value in object_state.scalar_tensors.items():
curr_scalar_tensor_value = gathered_state.get(name, None)
assert curr_scalar_tensor_value is None or torch.equal(
scalar_tensor_value, curr_scalar_tensor_value
), f"Different ranks have different values for {name}."
gathered_state[name] = scalar_tensor_value
for name, value in list(gathered_state.items()):
if not isinstance(value, AllGatherInfo):
continue
assert value.work is not None
value.work.wait()
gathered_state[name] = torch.cat(
[
rank_tensor[:rank_numel]
for rank_tensor, rank_numel in zip(value.tensors, value.numels)
if rank_numel > 0
]
)
return gathered_state
def _gather_orig_param_state(
fsdp_param_info: FSDPParamInfo,
fqn: str,
optim_state: Dict[str, Any],
shard_state: bool,
group=None,
) -> Dict[str, Any]:
"""
Gather the optimizer state for the original parameter with the name ``fqn``.
This API should only be used when ``use_orig_params`` is True.
"""
fsdp_state = fsdp_param_info.state
assert (
fsdp_state._use_orig_params
), "_gather_orig_param_state only support use_orig_params=True case"
flat_param = fsdp_param_info.flat_param
param_idx = fsdp_param_info.param_indices[fqn]
if (
fsdp_state.world_size == 1
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
):
return optim_state
gathered_state = _all_gather_optim_state(fsdp_state, optim_state, group=group)
# Unflatten state values.
for state_name, value in list(gathered_state.items()):
if not torch.is_tensor(value) or value.dim() == 0:
continue
value = value[: flat_param._numels[param_idx]].reshape(
flat_param._shapes[param_idx]
)
if shard_state:
assert fsdp_state.process_group is not None
value = _ext_chunk_tensor(
value,
fsdp_state.rank,
fsdp_state.world_size,
torch.cuda.device_count(),
fsdp_state.process_group,
)
value = value.cpu()
gathered_state[state_name] = value
return gathered_state
def _shard_orig_param_state(
fsdp_param_info: FSDPParamInfo,
fqn: str,
optim_state: Dict[str, Any],
) -> Dict[str, Any]:
"""
Shard the optimizer state for the original parameter with the name ``fqn``.
This API should only be used when ``use_orig_params`` is True.
"""
if not optim_state:
return {}
fsdp_state = fsdp_param_info.state
flat_param = fsdp_param_info.flat_param
param_idx = fsdp_param_info.param_indices[fqn]
optim_state = _gather_state_dict(optim_state, fsdp_state.process_group)
start, end = flat_param._shard_indices # type: ignore[attr-defined]
if not (start <= param_idx <= end and flat_param._shard_param_offsets): # type: ignore[attr-defined]
return {}
param_start, param_end = flat_param._shard_param_offsets[param_idx - start] # type: ignore[attr-defined]
# Flatten and shard the state.
new_optim_state: Dict[str, Any] = {}
for state_name, value in optim_state.items():
if torch.is_tensor(value) and value.dim() > 0:
value = value.flatten()[param_start : param_end + 1]
new_optim_state[state_name] = value
return new_optim_state
|